Zinc antimony borophosphate glasses has been determined for [10P2O5 –40B2O3 –xSb2O3 –(50–x)ZnO] and composition of [10P2O5 – 40B2O3 –40Sb2O3 –10ZnO] has been doped with 1 mol% of rare earth (Eu, Nd, Sm, Er). The functions of compositional changes on their structural features were examined using X–Ray Diffraction (XRD) to detect the amorphousity phase present. While Fourier Transform Infrared (IR) Spectroscopy were used to identify the presences of vibrational modes and band assignments of phosphate, borate, antimony, zinc and Rare earth ion in the system. XRD results expose that crystalline phase changes with different amount of zinc and antimony substitution. Hydroxyl group absorption also vary due to this composition changes and clearly shown in IR spectroscopy in the ranges 1400–4000 cm–1. Result of IR spectroscopy indicated that bands around 1440 cm–1 and 760 cm–1 was ascribed to the vas(B–O–B) and vs(P–O–P) vibration respectively. The changes of this vibration indicated that P–O–B linkage was formed near 660 cm–1. The modification of zinc antimony borophosphate glasses with rare earth was studied and showed present of rare earth ion in the glass system does not change the structural features.
A series of conducting polymer polypyrrole (PPy) and polypyrrole/cadmium sulfide (PPy/CdS) composites were successfully synthesized using the chemical reaction method. PPy/CdS composites were prepared with CdS concentration percentages ranging from 2 to 10%. From the X-ray diffraction (XRD) results, the XRD pattern showed evidence of conducting structure of polymer PPy and PPy/CdS composites. The spectrum clearly indicated that PPy polymer was amorphous. From the PPy/CdS composites spectrum, the six major peaks that were observed for all the samples were well known peaks that originated from CdS. From the results obtained, it shows that the conductivity of conducting polymer PPy and PPy/CdS composites at the low temperature range increased with the increase in percentage of CdS. The electrical conductivity increased from 2.85 × 10-7 to 1.66 × 10-5 S/cm in the low temperature range of 100 to 300K. While for the PPy/CdS composites, the increase of conductivity showed the same trend with the low temperature studied where the values increase from 2.11 × 10-5 to 8.74 × 10-5 S/cm.
The series samples of xTeO 2 - (70-x)
Boro-tellurite ceramics with the composition of 60B2O3-10TeO2-30MgO-1Eu2O3-1Dy2O3 in mol % were prepared by solid-state reaction method. The samples were characterized by x-ray diffraction (XRD), photoluminescence (PL) and FTIR spectroscopy. The XRD studies have revealed the presence of MgTe2O5 and MgB6O10.7H2O crystalline as the major and minor phases in these samples. The FTIR spectra reveal the presence of B-O vibrations of B-O-B, BO3 and BO4 bridging oxygen and Te-O stretching modes of Te2O, TeO3 and TeO4 units in the prepared ceramics. The PL peaks were assigned to the Eu3+ transitions 5D07F0 at 580 nm, 5D07F1 at 591 nm and 596 nm, 5D07F2 at 612, 618 and 621 nm, 5D07F3 at 651 nm, and 5D07F4 at 692 nm and 702 nm when excited at 394 nm.
Glass has been widely utilized in the field of lighting, telecommunication and spectroscopy. Boro-tellurite is one of the suitable glasses used for solid state lighting and laser application. The investigation on the luminescence properties of rare earth doped ceramic is rarely used due to the opacity. In this paper boro-tellurite prepared in ceramic can show the better luminescence with the less advantage. The aim of this paper is to present the effect and advantages in luminescence results of boro-tellurite ceramics doped with the constant amount of rare earth. Doped magnesium boro-tellurite with Eu3+ and Dy3+ ceramic have been prepared using solid state reaction method with the compositions of xTeO2-(70-x)B2O3-30MgO with 10≤x≤40, and have been doped with Eu2O3 (1mol%) and Dy2O3 (1mol%) . The characterizations of the samples have been investigated by means of X-Ray diffraction, Raman, Infrared and Photoluminescence spectroscopy. From the X-ray diffraction results, two phases are assigned to MgTe2O5 and Mg2B2O5. Raman spectroscopy showed strong bands observed in the vicinity of 140, 175, 220, 266, 332, 403, 436, 646, 694, 723, 757 and 806 cm-1. FTIR spectra showed bands located in the range between 400-800 cm-1 are assigned to the bending mode of Te-O-Te, TeO3 and TeO4. In the range of 800-1400 cm-1,the bands are associated with B-O, B-O-B, BO3 and BO4 bonds. The emission transition 5D0-7F2 corresponded to the red emission (612 nm) was found to be the most intense in all the Eu3+-doped magnesium boro-tellurite ceramics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.