Problem statement: An Indonesian marine bacterial isolate, Bacillus amyloliquefaciens PSM 3.1 was isolated for hydrolyzing cellulose. A 1500-bp nucleotide fragment was amplified from the chromosomal DNA by the use of primers directed against the conserved sequence of Bacilli endoglucanase genes obtained from GenBank. Approach: The fragment was cloned and expressed in Escherichia coli. Results: The endoglucanase gene (eglII gene) had an open reading frame of 1500 nucleotides encoding a protein of 499 amino acids. The EglII protein belonged to Glycosyl Hydrolase family 5 (GH5) with a Cellulose Binding Module 3 (CBM 3). The structure model of the EglII protein revealed that the catalytic residues seemed to be Glu169 (as proton donor) and Glu257 (as nucleophile) and the catalytic triad residues were Thr256, His229 and Glu169. The EglII endoglucanase exhibited an optimum pH of 6.0 and temperature of 50°C and the enzyme tolerated to high salt concentration. Conclusion/Recommendations: This EglII endoglucanase is a promising candidate for many applications in biomass degradation.
Problem statement: Bacteria from the surface of the tropical marine hard coral Acropora sp. were screened for producing raw-starch-degrading-α-amylase. Approach: Based on its 16s rDNA sequence, a bacterium that produced the highest amylolitic activity was identified as Bacillus amyloliquifaciens ABBD. The bacterial isolate secreted a α-amylase extracellularly and then the enzyme was partially purified by ammonium sulfate precipitation followed by anion exchange chromatography. Results: Electrophoresis results both SDS-PAGE and native PAGE suggested that the enzyme was a heterodimeric protein (97 kDa) consisting of 45 and 55 kDa subunits. The α-amylase had an optimum pH of 7.0 and temperature of 60°C. More than 80% activity of the enzyme was retained under high salt conditions (up to 20% NaCl). The enzyme remained stable at 50°C for 1 h. Starch hydrolysis by the enzyme at 70°C yielded oligosaccharides (G2-G4) and at room temperature yielded glucose/maltose (G1 and G2). Conclusion: The B. amyloliquifaciens ABBD α-amylase was capable of degrading various raw starch granules from corn, rice, cassava and sago at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.