Sunflower is the most important source of edible oil and fourth-largest oilseed crop in the world. The purpose of this study was to investigate the effect of using two organic fertilizers from various sources (compost coupled with biofertilizer (CCB), filter mud cake (FMC)) and comparing them to conventional inorganic fertilizers in their effect on the quality of sunflower seeds, sunflower oil, and soil properties. The data showed that the highest value of dry weight, plant height, disk dry weight in addition to chlorophyll content, and phenolic secondary metabolites in oil was measured after the application of inorganic fertilizer, while the use of organic fertilizer contributed to a substantial increase in the production yield of sunflower seeds, oil, and a high stalk yield compared with inorganic treatment. Oils produced from organic fertilizer (CCB and FMC) gave higher blue color values than inorganic ones and the most transparent oil was inorganic while the organic treatments produced darkest oils. The results for chemical composition of sunflower seeds showed nonsignificant differences for protein and ash among all treatments while a significant difference with regard to oil content was recorded, in which the FMC recorded the highest oil content followed by compost (CCB), and finally came the inorganic treatment. Organic fertilizers are a valuable source of organic material and nutrients essential for plants and can be safely used for soil, crops, and the environment.
Pollen is a male flower gametophyte located in the anthers of stamens in angiosperms and a considerable source of compounds with health protective potential. In the present work, phytochemical screening was carried out as well as analysis of the antioxidant and antibacterial properties of pollen extracts from Micromeria fruticosa, Achillea fragrantissima, and Phoenix dactylifera growing wild in Palestine. Phytochemical screening examined the total flavonol, flavone and phenolic content. The DPPH (1,2-Diphenyl-1-Picrylhydrazyl) and FRAP (ferric reducing antioxidant power) methods were used to assess antioxidant propriety, and disc diffusion, minimum inhibitory and bactericidal concentration tests were used to test the pollen extract’s antibacterial activity against multidrug-resistant (MDR) clinical isolates. The highest level of total phenolic was found in the extract of Micromeria fruticosa (56.78 ± 0.49 mg GAE (Gallic Acid Equivalent)/g). The flavone and flavonol content of samples ranged from 2.48 ± 0.05 to 8.03 ± 0.01 mg QE (Quercetin Equivalent)/g. Micromeria fruticosa pollen with IC50 values of 0.047 and 0.039 mg/mL in the DPPH and FRAP assays, respectively, showed the greatest radical scavenging action. In addition, this pollen showed a mild antibacterial action against the microorganisms studied, with MICs varying from 0.625 to 10 mg/mL and inhibition diameters ranging from 13.66 ± 1.5 to 16.33 ± 1.5 mm.
Anchusa italica Retz has been used for a long time in phytotherapy. The aim of the present study was to determine the antioxidant and antibacterial activities of extracts from the leaves and roots of Anchusa italica Retz. We first determined the content of phenolic compounds and flavonoids using Folin–Ciocalteu reagents and aluminum chloride (AlCl3). The antioxidant activity was determined using three methods: reducing power (FRAP), 2.2-diphenyl-1-picrylhydrazyl (DPPH), total antioxidant capacity (TAC). The antimicrobial activity was investigated against four strains of Escherichia coli, two strains of Klebsiella pneumoniae and coagulase-negative Staphylococcus, and one fungal strain of Candida albicans. The results showed that the root extract was rich in polyphenols (43.29 mg GAE/g extract), while the leave extract was rich in flavonoids (28.88 mg QE/g extract). The FRAP assay showed a strong iron reduction capacity for the root extract (IC50 of 0.11 µg/mL) in comparison to ascorbic acid (IC50 of 0.121 µg/mL). The DPPH test determined an IC50 of 0.11 µg/mL for the root extract and an IC50 of 0.14 µg/mL for the leaf extract. These values are low compared to those for ascorbic acid (IC50 of 0.16 µg/mL) and BHT (IC50 0.20 µg/mL). The TAC values of the leaf and root extracts were 0.51 and 0.98 mg AAE/g extract, respectively. In vitro, the extract showed inhibitory activity against all strains studied, with diameters of zones of inhibition in the range of 11.00–16.00 mm for the root extract and 11.67–14.33 mm for the leaf extract. The minimum inhibitory concentration was recorded for the leaf extract against E. coli (ATB:57), corresponding to 5 mg/mL. Overall, this research indicates that the extracts of Anchusa italica Retz roots and leaves exert significant antioxidant and antibacterial activities, probably because of the high content of flavonoids and polyphenols.
The present study aimed to determine floristic composition, vegetation cover of different communities in Wadi AlFurayshah, Saudi Arabia, and highlighting the ecological factors that affect species distribution. A total of 26 plant species were collected and identified to be distributed among four plant communities: Ziziphus nummularia, Panicum turegidum, Acacia gerardii, and Haloxylon salicornicum. The main factors influencing plant presence were soil texture, CaCO3, Na, Mg, Ca, Cl, EC, pH and organic matter content. The majority of the registered species in this survey were perennials with 16 of the total recorded species (61.54%), followed by annuals by 10 species (38.46%).
The use of contaminated water to irrigate crop plants poses a risk to human health from the bioaccumulation potential of microcystins (MCs) in the edible tissues of vegetable plants. The main objective of this study is to determine the concentration of total microcystins (MC-LR and MC-RR) in leafy green plants (Lactuca sativa L. var. longifolia and Eruca sativa) that have previously been irrigated with polluted water. Integrated water samples were collected by cleaned plastic bottles at a depth of about 30 cm from one of the sources of water used to irrigate agricultural lands for crop plants. At the same time, samples from plants were also collected because this water from the lake farm is used for the irrigation of surrounding vegetable plants such as Lactuca sativa L. var. longifolia and Eruca sativa. The dominant species of cyanobacteria in water samples are Microcystis aeruginosa (Kützing) and Oscillatoria limnetica Lemmermann, which were detected with an average cell count 2,300,000 and 450,000 cells/mL, respectively. These two dominant species in water produced two MCs variants (MC-LR, -RR) that were quantified by high-performance liquid chromatography (HPLC). Dissolve and particulate MCs were detected in the irrigation waters by HPLC with concentrations of 45.04–600 μg/L. MCs in the water samples exceeded the WHO safety limit (1 μg/L) of MC in drinking water. In addition, the total concentration of Microcystin in Lactuca sativa L. var. longifolia and Eruca sativa were 1044 and 1089 ng/g tissues, respectively. The estimated daily intake (EDI) of microcystins by a person (60 kg) consuming 300 g of fresh plants exceeded the total daily intake guidelines (0.04 μg kg−1 body weight) for human food consumption. According to the findings of this study, irrigation water and plants used for human consumption should be tested for the presence of MCs regularly through critical and regularly monitored programs to prevent the accumulation and transfer of such toxins through the food web.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.