The effects of osmotic dehydration (OD) treatment on volatile compound (myristicin) content and the antioxidant capacity of nutmeg () were studied. Fresh nutmeg pericarps were treated with varying sugar concentrations (60, 70, 80%) with different soaking periods at ambient temperature. The OD-treated nutmeg extracts were analyzed for myristicin content via Gas Chromatography Flame Ionization Detector. The phenolic content and antioxidant capacity were analyzed using Follin-Ciocalteu and a free radical scavenging activity assay. The myristicin content was highest (1.69 mg/100 mg) at 80% sugar concentration after 3 h of soaking. Total phenolic content and free radical scavenging activity were highest at 3 h of 80% sugar solution treatment with values of 76.90% and 1.75 mg GAE/g, respectively. OD treatment at varying sugar concentration levels and durations affects the production of myristicin and antioxidant composition. Treatment of nutmeg with OD at 80% sugar concentration for 3 h is preferable, resulting in an acceptable level of myristicin and high antioxidants.
Myristicin, a potential toxicant, is a major ester present in the pericarp of nutmeg (Myristica fragrans) and alcohol acyltransferase (AAT) is responsible for its generation. The objective of the study was firstly to estimate the effect of blanching and pickling process on the inactivation of AAT and production of myristicin in nutmeg pericarp. Secondly, the effect of pickling process on the physical, microbial, antioxidant and sensory properties of nutmeg was evaluated. The nutmeg fruit pericarp was water-blanched for 0, 3, 5, 7 and 9 min. The increased blanching time significantly (p < 0.05) reduced the AAT activity (3.478 U/mg protein) compared to fresh nutmeg (39.034 U/mg protein). The reduction of myristicin was so efficient that it could not be detected after 9 min of blanching. Similarly, the pickling process significantly (p < 0.05) inhibited the AAT activity and lowered the myristicin content. However, the blanching significantly (p < 0.05) lowered the total phenol content and reduced the free radical scavenging capacity of pickled nutmeg (BP) when compared with commercial pickled nutmeg. Blanched pickled nutmeg (BP) presented the same color characteristics as of commercial one, although significant reduction in hardness was observed. No growth of yeast and mold was noticed for all the blanched pickled nutmeg. The sensory analysis data demonstrated that blanching up to 7 min maintained the overall acceptability of pickled nutmeg as of commercial pickled nutmeg. Thus, the study suggests that blanching and pickling treatment improved the quality of nutmeg effectively by inhibiting the AAT activity and reducing the myristicin content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.