The string matching problem is considered as one of the most interesting research areas in the computer science field because it can be applied in many essential different applications such as intrusion detection, search analysis, editors, internet search engines, information retrieval and computational biology. During the matching process two main factors are used to evaluate the performance of the string matching algorithm which are the total number of character comparisons and the total number of attempts. This study aims to produce an efficient hybrid exact string matching algorithm called Sinan Sameer Tuned Boyer Moore-Quick Skip Search (SSTBMQS) algorithm by blending the best features that were extracted from the two selected original algorithms which are Tuned Boyer-Moore and Quick-Skip Search. The SSTBMQS hybrid algorithm was tested on different benchmark datasets with different size and different pattern lengths. The sequential version of the proposed hybrid algorithm produces better results when compared with its original algorithms (TBM and Quick-Skip Search) and when compared with Maximum-Shift hybrid algorithm which is considered as one of the most recent hybrid algorithm. The proposed hybrid algorithm has less number of attempts and less number of character comparisons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.