An adsorbed natural gas storage tank was simulated in this work, with the objective being to predict the filling time, the filling capacity and the storage efficiency. A high-capacity HKUST-1 type metal-organic framework was used as adsorbent. The time-dependent phenomenological model of the adsorbed natural gas storage tank was developed considering mass, momentum and energy transfers. The cylindrical tank was 1.09 m in length with a radius of 0.15 m, and was equipped with an inlet hole for gas inflow. The simulation results show that the temperature increase in the tank due to adsorption heat is very significant. This affects the adsorption ability of the bed inside the tank, so the storage efficiency is consequently low. For the inlet gas flowrate of 50 L/min, the storage efficiency is 38% and increases to only 47% at 5 L/min. Corresponding filling capacities for the two flowrates are not very different, i.e. 89 V(STP)/V and 109 V(STP)/V. However, the difference in the filling times is extremely significant, which are 16 min at 50 L/min and 255 min at 5 L/min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.