Background Intraventricular hemorrhage (IVH) is the most common type of brain injury in newborns, especially in newborns with Neonatal acute respiratory distress syndrome (ARDS). IVH can cause brain parenchyma damage and long-term neurological sequelae in children. Early identification and prevention of sequelae are essential. This study aims to establish a predictive nomogram for the early prediction of IVH in newborns with ARDS. Methods From 2019 to 2021, we collected data from 222 infants diagnosed with ARDS in the Department of Neonatology, First Affiliated Hospital of Xinjiang Medical University. Infants have been randomly assigned to the training set (n = 161) or the validation set (n = 61) at a ratio of 7:3. Variables were screened using the Least Absolute Contract and Selection Operator (LASSO) regression to create a risk model for IVH in infants with ARDS. The variables chosen in the LASSO regression model were used to establish the prediction model using multivariate logistic regression analysis. Results We recognized 4 variables as independent risk factors for IVH in newborns with ARDS via LASSO analysis, consisting of premature rupture of membranes (PROM), pulmonary surfactant (PS) dosage, PH1 and Arterial partial pressure of oxygen (PaO21). The C-Index for this dataset is 0.868 (95% CI: 0.837–0.940) and the C index in bootstrap verification is 0.852 respectively. The analysis of the decision curve shows that the model can significantly improve clinical efficiency in predicting IVH. We also provide a website based on the model and open it to users for free, so that the model can be better applied to clinical practice. Conclusion In conclusion, the nomogram based on 4 factors shows good identification, calibration and clinical practicability. Our nomographs can help clinicians make clinical decisions, screen high-risk ARDS newborns, and facilitate early identification and management of IVH patients.
Background: Intraventricular hemorrhage(IVH)is the most common type of brain injury in newborns, especially in newborns with ARDS. IVH can cause brain parenchyma damage and long-term neurological sequelae in children. Early identification and prevention of sequelae are essential. This study aims to establish a predictive nomogram for the early prediction of IVH in newborns with ARDS. Methods: From 2019 to 2021, we collected data from 222 infants diagnosed with ARDS in the Department of Neonatology, First Affiliated Hospital of Xinjiang Medical University. Infants have been randomly assigned to the training set (n=161) or the validation set(n=61) at a ratio of 7:3. Variables were screened using the Least Absolute Contract and Selection Operator (LASSO) regression to create a risk model for IVH in infants with ARDS. The variables chosen in the LASSO regression model were used to establish the prediction model using multivariate logistic regression analysis. Results: We recognized 4 variables as independent risk factors for IVH in newborns with ARDS via LASSO analysis, consisting of premature rupture of membranes (PROM), pulmonary surfactant (PS) dosage, PH1 and O21. The C-Index for this dataset is 0.868 (95% CI: 0.837-0.940) and the C index in bootstrap verification is 0.852 respectively. The analysis of the decision curve shows that the model can significantly improve clinical efficiency in predicting IVH. We also provide a website based on the model and open it to users for free, so that the model can be better applied to clinical practice. Conclusions: In conclusion, the nomogram based on 4 factors shows good identification, calibration and clinical practicability. Our nomographs can help clinicians make clinical decisions, screen high-risk ARDS newborns, and facilitate early identification and management of IVH patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.