A 50-years old male presented with quadriplegia and paresthesia and was diagnosed as Guillain-Barré syndrome (GBS). He was found positive for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) six weeks prior to the onset of weakness. GBS disability score was 4. Electrophysiology showed acute inflammatory demyelinating polyradiculopathy. Anti-SARS-CoV-2 IgG was found positive. Immunological tests for Campylobacter jejuni , Zika virus, Hepatitis E virus,Herpes Simplex virus, Haemophilus influanzae and Mycoplasma pneumoniae were negative. Patient received standard dose of intravenous immunoglobulin and after six months had almost complete recovery of muscle power. This case represents possible association of SARS-CoV-2 infection and GBS with good clinical outcome.
Stress can impair T cell-mediated immunity. To determine if infants with high stress responses had deficits in T-cell mediated immunity, we examined the association of pain-induced cortisol responsiveness with thymic function and vaccine responses in infants. This study was performed among 306 (male = 153 and female = 153) participants of a randomized, controlled trial examining the effect of neonatal vitamin A supplementation on immune function in Bangladesh (NCT01583972). Salivary cortisol was measured before and 20 min after a needle stick (vaccination) at 6 weeks of age. The thymic index (TI) was determined by ultrasonography at 1, 6, 10 and 15 weeks. T-cell receptor excision circle and blood T-cell concentrations were measured at 6 and 15 weeks. Responses to Bacillus Calmette-Guérin (BCG), tetanus toxoid, hepatitis B virus and oral poliovirus vaccination were assayed at 6 and 15 weeks. Cortisol responsiveness was negatively associated with TI at all ages (p < .01) in boys only, was negatively associated with naïve helper T-cell concentrations in both sexes at both 6 (p = .0035) and 15 weeks (p = .0083), and was negatively associated with the delayed-type hypersensitivity (DTH) skin test response to BCG vaccination at 15 weeks (p = .034) in both sexes. Infants with a higher cortisol response to pain have differences in the T-cell compartment and a lower DTH response to vaccination. Sex differences in the immune system were seen as early as 6 weeks of age in these healthy infants.
Background Vitamin A (VA) stores are low in early infancy and may impair development of the immune system. Objective This study determined if neonatal VA supplementation (VAS) affects the following: 1) development of regulatory T (Treg) cells; 2) chemokine receptor 9 (CCR9) expression, which directs mucosal targeting of immune cells; and 3) systemic endotoxin exposure as indicated by changed plasma concentrations of soluble CD14 (sCD14). Secondarily, VA status, growth, and systemic inflammation were investigated. Methods In total, 306 Bangladeshi infants were randomly assigned to receive 50,000 IU VA or placebo (PL) within 48 h of birth, and immune function was assessed at 6 wk, 15 wk, and 2 y. Primary outcomes included the following: 1) peripheral blood Treg cells; 2) percentage of Treg, T, and B cells expressing CCR9; and 3) plasma sCD14. Secondary outcomes included the following: 4) VA status measured using the modified relative dose-response (MRDR) test and plasma retinol; 5) infant growth; and 6) plasma C-reactive protein (CRP). Statistical analysis identified group differences and interactions with sex and birthweight. Results VAS increased (P = 0.004) the percentage of CCR9+ Treg cells (13.2 ± 1.37%) relative to PL (9.17 ± 1.15%) in children below the median birthweight but had the opposite effect (P = 0.04) in those with higher birthweight (VA, 9.13 ± 0.89; PL, 12.1 ± 1.31%) at 6 and 15 wk (values are combined mean ± SE). VAS decreased (P = 0.003) plasma sCD14 (1.56 ± 0.025 mg/L) relative to PL (1.67 ± 0.032 mg/L) and decreased (P = 0.034) the prevalence of VA deficiency (2.3%) relative to PL (9.2%) at 2 y. Conclusions Neonatal VAS enhanced mucosal targeting of Treg cells in low-birthweight infants. The decreased systemic exposure to endotoxin and improved VA status at 2 y may have been due to VA-mediated improvements in gut development resulting in improved barrier function and nutrient absorption. This trial was registered at clinicaltrials.gov as NCT01583972 and NCT02027610.
BackgroundOver the last few years, epidemiological studies have shown that infection with Helicobacter pylori has a major effect on micronutrient deficiency as well as on adverse pregnancy outcomes. Importantly, there are gaps in understanding the linkage of H. pylori infection with micronutrients deficiency in pregnant women.ObjectiveWe conducted a systematic review and meta-analysis to estimate the association between H. pylori infection and micronutrient deficiencies in pregnant women.MethodsA systematic literature search was conducted for relevant articles using PubMed, Web of Science, and Scopus database from inception to March 2020. The OR with 95% CIs was determined by meta-analysis of data extracted from the selected studies.ResultsFrom 2384 primary articles, 6 studies were selected for systematic reviews and 4 studies distinctively (with 1274 participants: 553 cases and 721 controls) were selected for meta-analysis. The meta-analysed fixed effect model estimated the odds of having H. pylori infection was not significantly higher among pregnant women with micronutrient deficiencies than those without deficiencies (OR=1.12, 95% CI 0.88 to 1.42, p=0.37). In the subgroup analysis, no correlation was found between H. pylori infection and vitamin B12 (OR=0.74, 95% CI 0.45 to 1.21, p=0.22), folate (OR=1.07, 95% CI 0.73 to 1.58, p=0.73), and ferritin (OR=0.81, 95% CI 0.51 to 1.31, p=0.4). However, a positive correlation was found between iron-deficiency anaemia (IDA) and H. pylori infection (OR=16.23, 95% CI 4.19 to 62.93, p<0.0001) during pregnancy.ConclusionH. pylori infection is associated with increased risk of IDA but not with deficiency of other micronutrients in pregnancy.PROSPERO registration numberCRD42019135683.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.