Luciferin-regenerating enzyme (LRE) contributes to in vitro recycling of D-luciferin. In this study, reinvestigation of the luciferase-based LRE assay is reported. Here, using quick change site-directed mutagenesis seven T-LRE (Lampyris turkestanicus LRE) mutants were constructed and the most functional mutant of T-LRE (T 69 R) was selected for this research and the effects of D-and L-cysteine on T 69 R T-LRE-luciferase-coupled assay are examined. Our results demonstrate that bioluminescent signal of T 69 R T-LRE-luciferase-coupled assay increases and then reach equilibrium state in the presence of 5 mM D-cysteine. In addition, results reveal that 5 mM D-and L-cysteine in the absence of T 69 R T-LRE cause a significant increase in bioluminescence intensity of luciferase over a long time as well as decrease in decay rate. Based on activity measurements, far-UV CD analysis, ANS fluorescence and DLS (Dynamic light scattering) results, D-cysteine increases the activity of luciferase due to weak redox potential, antiaggregatory effects, induction of changes in conformational structure and kinetics properties. In conclusion, in spite of previous reports on the effect of LRE on luciferase bioluminescent intensity, the majority of increase in luciferase light output and time-course originate from the direct effects of D-cysteine on structure and activity of firefly luciferase.
BackgroundDiabetes mellitus is a group of metabolic diseases characterized by high blood sugar (glucose) levels that result from defects in insulin secretion, or action, or both. Inspired by previous report the release of ATP from RBCs, which may participate in vessel dilation by stimulating NO production in the endothelium through purinergic receptor signaling and so, the aim of this study is to clearly determined relationship between RBC ATP/ADP ratio with nitric oxide.MethodsThe ATP/ADP ratio of erythrocytes among four groups of normal individuals (young & middle age), athletes’ subjects and diabetic patients were compared and the relationship between ATP/ADP ratio and NO level of plasma was determined with AVOVA test and bioluminescence method.ResultsATP/ADP level in four groups normal (young & middle age), athletes, diabetes] are measured and analyzed with ANOVA test that show a significant difference between groups (P-value < 0.001). A significant positive correlation was found between RBC ATP/ADP content (r = 0.705; P < 0.001). Plasma NO content is also analyzed with ANOVA test which shows a significant difference between groups.ConclusionIn this study, a positive relationship between RBC ATP/ADP ratio and NO was found. Based on the obtained result, higher RBC ATP/ADP content may control the ratio of plasma NO in different individuals, also this results show that ATP can activate endothelial cells in NO production and is a main factor in releasing of NO from endothelial cells.
Results obtained here demonstrated that the exposure of pregnant rats to AgNPs increases the expression of genes involved in dopamine metabolism in the brain of offspring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.