Diabetic retinopathy is one of the leading causes of visual disability and blindness worldwide. It is estimated that 4.8% out of 37 million cases of blindness were due to diabetic retinopathy, globally. It affects patients suffering from prolonged diabetes, which probably results in permanent blindness. The earliest symptoms surfaced when the patients have vision problems. Therefore, regular eyes examination and early intervention normally controls this disease. Many studies for early intervention and prevention of diabetic retinopathy uses various predictive models. The booming of database and digital storage technology creates an abundance of health records. Thus, data mining techniques helps uncover meaningful patterns while attending to sensitivity health record issues. Hence, this study took the data mining approach in predicting the presence of diabetic retinopathy narrowing to only Type II diabetic patients as well as to determine the risk factors that contribute to the presence of diabetic retinopathy. The data mining models selected for this study is the Logistic Regression, Decision Tree and Artificial Neural Network. The dataset of 361 Type II diabetic patients from Ophthalmology Clinic, UiTM Medical Specialist Centre were selected between January 2014 to December 2018, consists of 17 variables. The result shows that the Logistic Regression using Forward selection method model is the best model it had the highest sensitivity (Sen=50.0%), specificity (Spe=79.03%) and accuracy rate (Acc=66.36%) on the validation dataset compared to other Logistic Regression selection options. Meanwhile among the Decision Tree models, DT using Gini is the best model. Logistic Regression (Forward) and Decision Tree (Gini) were then compared with Artificial Neural Network model (Sen=56.25%, Spe=70.97%, Acc=64.55%). The results demonstrated that Logistic Regression using Forward selection method was the best model to predict the presence of diabetic retinopathy among the Type II diabetic patients compared to other models. The significant risk factors associated with the presence of the diabetic retinopathy obtained are duration of diabetes, HbA1C level, diabetic foot ulcer, nephropathy, and neuropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.