Abstract-In this paper, we proposed an efficient knowledge-based Support Vector Regression Machine (SVRM) method and applied it to the synthesis of the transmission lines for the microwave integrated circuits, with the highest possible accuracy using the fewest accurate data. The technique has integrated advanced concepts of SVM and knowledge-based modeling into a powerful and systematic framework. Thus, synthesis model as fast as the coarse models and at the same time as accurate as the fine models is obtained for the RF/Microwave planar transmission lines. The proposed knowledge-based support vector method is demonstrated by a typical worked example of microstrip line. Success of the method and performance of the resulted synthesis model is presented and compared with ANN results.
Abstract-In this work, Support Vector Machine (SVM) formulation is worked out based upon "L" measured data for the resonant frequency, operation bandwidth, input impedance of a rectangular microstrip antenna. Results of the formulation are compared with the theoretical results obtained in literature, much better characterization is observed with greater accuracy. At the same time, Artificial Neural Network (ANN) is employed in generalization of the data on the resonant frequency, operation bandwidth, and input impedance of the antenna. Performances of the two advanced nonlinear learning machines are compared and superiority of the SVM is verified.
In this article, the support vector regression is adapted to the analysis and synthesis of microstrip lines on all isotropic/anisotropic dielectric materials, which is a novel technique based on the rigorous mathematical fundamentals and the most competitive technique to the popular artificial neural networks (ANN). In this design process, accuracy, computational efficiency and number of support vectors are investigated in detail and the support vector regression performance is compared with an ANN performance. It can be concluded that the ANN may be replaced by the support vector machines in the regression applications because of its higher approximation capability and much faster convergence rate with the sparse solution technique. Synthesis is achieved by utilizing the analysis blackbox bidirectionally by reverse training. Furthermore, by using the adaptive step size, a much faster convergence rate is obtained in the reverse training. Besides, design of microstrip lines on the most commonly used isotropic/anisotropic dielectric materials are given as the worked examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.