We have explored the role of mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase in regulating ketogenesis. We had previously cloned the cDNA for mitochondrial HMG-CoA synthase and have now studied the regulation in vivo of the expression of this gene in rat liver. The amount of processed mitochondrial HMG-CoA synthase mRNA is rapidly changed in response to cyclic AMP, insulin, dexamethasone and refeeding, and is greatly increased by starvation, fat feeding and diabetes. We conclude that one point of ketogenic control is exercised at the level of genetic expression of mitochondrial HMG-CoA synthase.
Reinfections with SARS-CoV-2 have already been documented in humans, although its real incidence is currently unknown. Besides having a great impact on public health, this phenomenon raises the question of immunity generated by a single infection is sufficient to provide sterilizing/protective immunity to a subsequent SARS-CoV-2 re-exposure. The Golden Syrian hamster is a manageable animal model to explore immunological mechanisms able to counteract COVID-19, as it recapitulates pathological aspects of mild to moderately affected patients. Here, we report that SARS-CoV-2-inoculated hamsters resolve infection in the upper and lower respiratory tracts within seven days upon inoculation with the Cat01 (G614) SARS-CoV-2 isolate. Three weeks after the primary challenge, and despite high titres of neutralizing antibodies, half of the animals were susceptible to reinfection by both identical (Cat01, G614) and variant (WA/1, D614) SARS-CoV-2 isolates. However, upon re-inoculation, only nasal tissues were transiently infected with much lower viral replication than those observed after the first inoculation. These data indicate that a primary SARS-CoV-2 infection is not sufficient to elicit a sterilizing immunity in hamster models but protects against lung disease.
To date, no evidence supports the fact that animals play a role in the epidemiology of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus infectious disease 2019 (COVID-19). However, several animal species are naturally susceptible to SARS-CoV-2 infection. Besides pets (cats, dogs, Syrian hamsters, and ferrets) and farm animals (minks), different zoo animal species have tested positive for SARS-CoV-2 (large felids and non-human primates). After the summer of 2020, a second wave of SARS-CoV-2 infection occurred in Barcelona (Spain), reaching a peak of positive cases in November. During that period, four lions (Panthera leo) at the Barcelona Zoo and three caretakers developed respiratory signs and tested positive for the SARS-CoV-2 antigen. Lion infection was monitored for several weeks and nasal, fecal, saliva, and blood samples were taken at different time-points. SARS-CoV-2 RNA was detected in nasal samples from all studied lions and the viral RNA was detected up to two weeks after the initial viral positive test in three out of four animals. The SARS-CoV-2 genome was also detected in the feces of animals at different times. Virus isolation was successful only from respiratory samples of two lions at an early time-point. The four animals developed neutralizing antibodies after the infection that were detectable four months after the initial diagnosis. The partial SARS-CoV-2 genome sequence from one animal caretaker was identical to the sequences obtained from lions. Chronology of the events, the viral dynamics, and the genomic data support human-to-lion transmission as the origin of infection.
Several cases of naturally infected dogs with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported despite the apparently low susceptibility of this species. Here, we document the first reported case of infection caused by the Delta (B.1.617.2) variant of concern (VOC) in a dog in Spain that lived with several household members suffering from Coronavirus Infectious Disease 2019 (COVID-19). The animal displayed mild digestive and respiratory clinical signs and had a low viral load in the oropharyngeal swab collected at the first sampling. Whole-genome sequencing indicated infection with the Delta variant, coinciding with the predominant variant during the fifth pandemic wave in Spain. The dog seroconverted, as detected 21 days after the first sampling, and developed neutralizing antibodies that cross-neutralized different SARS-CoV-2 variants. This study further emphasizes the importance of studying the susceptibility of animal species to different VOCs and their potential role as reservoirs in the context of COVID-19.
Cultures of melanized fungi representative of the black yeast orders Capnodiales (Cladosporium cladosporioides and Neohortaea acidophila) and Chaetothyriales (Cladophialophora psammophila) were confined with indoor air from the laboratory during 48 h. Volatile organic compounds (VOCs) from the headspace were analyzed by thermal desorption gas chromatography time-of-fly mass spectrometry (TD-GC-ToFMS, detection threshold 0.1 μg m) and compared against an abiotic control. A mixture of 71 VOCs were identified and quantified in the indoor air (total concentration 1.4 mg m). Most of these compounds were removed in the presence of fungal biomass, but 40 newly formed putative volatile metabolites were detected, though at comparatively low total concentrations (<50 μg m). The VOCs emission profile of C. cladosporioides, a ubiquitous and well-known species often associated to the sick building syndrome, was consistent with previous literature reports. The specialized C. psammophila and N. acidophila, isolated respectively from gasoline polluted soil and from lignite, displayed rather specific VOCs emission profiles. Mass balances on the fungal uptake and generation of VOCs resulted in overall VOCs removal efficiencies higher than 96% with all tested fungi. Applied aspects and biosafety issues concerning the suitability of black yeasts for the biofiltration of indoor air have been discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.