Deficits in hippocampal synaptic plasticity result in cognitive impairment in Huntington's disease (HD). Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that exerts neuroprotective actions, mainly through the PAC1 receptor. However, the role of PACAP in cognition is poorly understood, and no data exists in the context of Huntington's disease (HD). Here, we investigated the ability of PACAP receptor stimulation to enhance memory development in HD. First, we observed a hippocampal decline of all three PACAP receptor expressions, i.e., PAC1, VPAC1, and VPAC2, in two different HD mouse models, R6/1 and HdhQ7/Q111, from the onset of cognitive dysfunction. In hippocampal post-mortem human samples, we found a specific decrease of PAC1, without changes in VPAC1 and VPAC2 receptors. To determine whether activation of PACAP receptors could contribute to improve memory performance, we conducted daily intranasal administration of PACAP38 to R6/1 mice at the onset of cognitive impairment for seven days. We found that PACAP treatment rescued PAC1 level in R6/1 mice, promoted expression of the hippocampal brain-derived neurotrophic factor, and reduced the formation of mutant huntingtin aggregates. Furthermore, PACAP administration counteracted R6/1 mice memory deficits as analyzed by the novel object recognition test and the T-maze spontaneous alternation task. Importantly, the effect of PACAP on cognitive performance was associated with an increase of VGlut-1 and PSD95 immunolabeling in hippocampus of R6/1 mice. Taken together, these results suggest that PACAP, acting through stimulation of PAC1 receptor, may have a therapeutic potential to counteract cognitive deficits induced in HD.
Huntington’s disease (HD) is a hereditary neurodegenerative disorder caused by the expression of mutant huntingtin (mHtt). One of the main features of HD is the degeneration of the striatum that leads to motor discoordination. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that acts through three receptors named PAC1R, VPAC1R, and VPAC2R. In the present study, we first investigated the effect of PACAP on STHdhQ7/Q7 and STHdhQ111/Q111 cells that express wild-type Htt with 7 and mHtt with 111 glutamines, respectively. Then we explored the capacity of PACAP to rescue motor symptoms in the R6/1, a murine model of HD. We found that PACAP treatment (10–7 M) for 24 h protects STHdhQ111/Q111 cells from mHtt-induced apoptosis. This effect is associated with an increase in PAC1R transcription, phosphorylation of ERK and Akt, and an increase of intracellular c-fos, egr1, CBP, and BDNF protein content. Moreover, the use of pharmacological inhibitors revealed that activation of ERK and Akt mediates these antiapoptotic and neurotrophic effects of PACAP. To find out PAC1R implication, we treated STHdh cells with vasoactive intestinal peptide (VIP), which exhibits equal affinity for VPAC1R and VPAC2R, but lower affinity for PAC1R, in contrast to PACAP which has same affinity for the three receptors. VIP reduced cleaved caspase-3 protein level, without promoting the expression of c-fos, egr1, CBP, and the neurotrophin BDNF. We next measured the protein level of PACAP receptors in the striatum and cortex of R6/1 mice. We observed a specific reduction of PAC1R at the onset of motor symptoms. Importantly, the intranasal administration of PACAP to R6/1 animals restored the motor function and increased the striatal levels of PAC1R, CBP, and BDNF. In conclusion, PACAP exerts antiapoptotic and neurotrophic effects in striatal neurons mainly through PAC1R. This effect in HD striatum allows the recovery of motor function and point out PAC1R as a therapeutic target for treatment of HD.
Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat in the exon-1 of the huntingtin (htt) gene. The presence of mutant htt (mhtt) results in multiple physiopathological changes, including protein aggregation, transcriptional deregulation, decreased trophic support, alteration in signaling pathways and excitotoxicity. Indeed, the presence of mhtt induces changes in the activities/levels of different kinases, phosphatases and transcription factors that can impact on cell survival. Many studies have provided evidence that transcription may be a major target of mhtt, as gene dysregulation occurs before the onset of symptoms. The greatest number of downregulated genes in HD has led to test the ability of a large number of compounds to restore gene transcription in mouse models of HD. On the other hand, mhtt engenders multiple cellular dysfunctions including an increase of pathological glutamate-mediated excitotoxicity. For that reason, targeting the excess of glutamate has been the goal for many promising drugs leading to clinical trials. Although advances in developing effective therapies are evident, currently, there is no known cure for HD and existing symptomatic treatments are limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.