Aim To provide the first comparative overview on the current numbers of alien species that invade representative European terrestrial and freshwater habitats for a range of taxonomic groups. Location Europe.Methods Numbers of naturalized alien species of plants, insects, herptiles, birds and mammals occurring in 10 habitats defined according to the European Nature Information System (EUNIS) were obtained from 115 regional data sets. Only species introduced after ad 1500 were considered. Data were analysed by ANCOVA and regression trees to assess whether differences exist among taxonomic groups in terms of their habitat affinity, and whether the pattern of occurrence of alien species in European habitats interacts with macroecological factors such as insularity, latitude or area. ResultsThe highest numbers of alien plant and insect species were found in human-made, urban or cultivated habitats; if controlled for habitat area in the region, wetland and riparian habitats appeared to support relatively high numbers of alien plant species too. Invasions by vertebrates were more evenly distributed among habitats, with aquatic and riparian, woodland and cultivated land most invaded. Mires, bogs and fens, grassland, heathland and scrub were generally less invaded. Habitat and taxonomic group explained most variation in the proportions of alien species occurring in individual habitats related to the total number of alien species in a region, and the basic pattern determined by these factors was fine-tuned by geographical variables, namely by the mainland-island contrast and latitude, and differed among taxonomic groups.Main conclusions There are two ecologically distinct groups of alien species (plants and insects versus vertebrates) with strikingly different habitat affinities. Invasions by these two contrasting groups are complementary in terms of habitat use, which makes an overall assessment of habitat invasions in Europe possible. Since numbers of naturalized species in habitats are correlated among taxa within these two groups, the data collected for one group of vertebrates, for example, could be used to estimate the habitat-specific numbers of alien species for other vertebrate groups with reasonable precision, and the same holds true for insects and plants.
Aim Biological invasions are a major component of global change with increasing effects on natural ecosystems and human societies. Here, we aim to assess the relationship between plant invader species attributes and the extent of their distribution range size, at the same time that we assess the association between environmental factors and plant invader species richness. Location Spain, Mediterranean region. Methods From the species perspective, we calculated the distribution range size of the 106 vascular plant invaders listed in a recently published atlas of alien plant species in Spain. Range size was used as an estimation of the degree of invasion success of the species. To model variation in range size between species as a function of a set of species attributes, we adopted the framework of the generalized linear mixed models because they allow the incorporation of taxonomic categories as nested random factors to control for phylogenetic relationships. From the invaded site perspective, we determined invader plant species richness as the number of species for each 10 × 10 km Universal Transverse Mercator (UTM) grid. For each grid cell, we estimated variables concerning landscape, topography, climate and human settlement. Then, we performed a generalized linear mixed model incorporating a defined spatial correlation structure to assess the relationship between plant invader richness and the environmental predictors. Results From the species perspective, wind dispersal and minimum residence time appeared to favour invasion success. From the invaded site perspective, we identified high anthropogenic disturbance, low altitude, short distance to the coastline and dry, hot weather as the main correlates to UTM grid cell invader richness. Main conclusions According to these results, an increasing importance of man‐modified ecosystems and global warming in the Mediterranean region should facilitate the expansion of plant invaders, especially wind‐dispersed species, leading to the accumulation of invasive species in some sites (i.e. invasion hot spots).
Risk assessment schemes have been developed to identify potential invasive species, prevent their spread and reduce their damaging effects. One of the most promising tools for detecting plant invaders is the weed risk assessment (WRA) scheme developed for Australia. Our study explores whether the Australian WRA can satisfactorily predict the invasion status of alien plants in the Mediterranean Basin by screening 100 invasive and 97 casual species in Spain. Furthermore, we analysed whether the factors taken into account in the WRA are linked to invasion likelihood (i.e., invasion status) or to impacts. The outcome was that 94% of the invasive species were rejected, 50% of the casual species were rejected and 29% of them required further evaluation. The accuracy for casuals is lower than in other studies that have tested non-invasive (i.e., casuals or non-escaped) alien species. We postulate that low accuracy for casual species could result from: (1) an incorrect ''a priori'' expert classification of the species status, (2) a high weight of the WRA scores given to potential impacts, and (3) casual species being prone to becoming invasive when reaching a minimum residence time threshold. Therefore, the WRA could be working as a precaution early-warning system to identify casual species with potential to become invasive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.