Plasma exosomal miRNAs were evaluated for prognosis in an initial set of 44 metastatic renal cell cancer (mRCC) patients by RNA sequencing. Among ~3.49 million mappable reads per patient, miRNAs accounted for 93.1% of the mapped RNAs. 227 miRNAs with high abundance were selected for survival analysis. Cox regression analysis identified association of 6 miRNAs with overall survival (OS) (P<0.01, False discovery rate (FDR) < 0.3). Five of the associated miRNAs were quantified in an independent follow-up cohort of 65 mRCC patients by TaqMan-based miRNA assays. Kaplan-Meier analysis confirmed the significant OS association of three miRs; miR-let-7i-5p (P=0.018, HR=0.49, 95% CI=0.21-0.84), miR-26a-1-3p (P=0.025, HR=0.43, 95% CI=0.10-0.84) and miR-615-3p (P=0.0007, HR=0.36, 95% CI=0.11-0.54). A multivariate analysis of miR-let-7i-5p with the clinical factor-based Memorial Sloan-Kettering Cancer Center (MSKCC) score improved survival prediction from an area under the curve (AUC) of 0.58 for MSKCC score to an average AUC of 0.64 across 48-month follow-up time. The multivariate model was able to define a high-risk group with median survival of 14 months and low risk group of 39 months (P=0.0002, HR=3.43, 95%CI, 2.73-24.15). Further validation of miRNA-based prognostic biomarkers are needed to improve current clinic-pathologic based prognostic models in patients with mRCC.
The usefulness of %[ − 2] proPSA and Prostate Health Index (phi) in the detection of prostate cancer are currently unknown. It has been suggested that these tests can distinguish prostate cancer from benign prostatic diseases better than PSA or %fPSA. We performed a systematic review and meta-analysis of the available scientific evidence to evaluate the clinical usefulness of %[ − 2] proPSA and phi. Relevant published papers were identified by searching computerized bibliographic systems. Data on sensitivity and specificity were extracted from 12 studies: 10 studies about %[ − 2] proPSA (3928 patients in total, including 1762 with confirmed prostate cancer) and eight studies about phi (2919 patients in total, including 1515 with confirmed prostate cancer). The sensitivity for the detection of prostate cancer was 90% for %[ − 2] proPSA and phi, while the pooled specificity was 32.5% (95% CI 30.6 -34.5) and 31.6% (95% CI 29.2 -34.0) for %[ − 2] proPSA and phi, respectively. The measurement of %[ − 2] proPSA improves the accuracy of prostate cancer detection in comparison with PSA or %fPSA, particularly in the group of patients with PSA between 2 μ g/L and 10 μ g/L. Similar results were obtained measuring phi. Using these tests, it is possible to reduce the number of unnecessary biopsies, maintaining a high cancer detection rate. Published results also showed that %[ − 2] proPSA and phi are related to the aggressiveness of the tumor.
Point-of-care testing (POCT) is the analysis of patient specimens outside the clinical laboratory, near or at the site of patient care, usually performed by clinical staff without laboratory training, although it also encompasses patient self-monitoring. It is able to provide a rapid result near the patient and which can be acted upon immediately. The key driver is the concept that clinical decision making may be delayed when samples are sent to the clinical laboratory. Balanced against this are considerations of increased costs for purchase and maintenance of equipment, staff training, connectivity to the laboratory information system (LIS), quality control (QC) and external quality assurance (EQA) procedures, all required for accreditation under ISO 22870. The justification for POCT depends upon being able to demonstrate that a more timely result (shorter turnaround times (TATs)) is able to leverage a clinically important advantage in decision making compared with the central laboratory (CL). In the four decades since POCT was adapted for the self-monitoring of blood glucose levels by subjects with diabetes, numerous new POCT methodologies have become available, enabling the clinician to receive results and initiate treatment more rapidly. However, these instruments are often operated by staff not trained in laboratory medicine and hence are prone to errors in the analytical phase (as opposed to laboratory testing where the analytical phase has the least errors). In some environments, particularly remote rural settings, the CL may be at a considerable distance and timely availability of cardiac troponins and other analytes can triage referrals to the main centers, thus avoiding expensive unnecessary patient transportation costs. However, in the Emergency Department, availability of more rapid results with POCT does not always translate into shorter stays due to other barriers to implementation of care. In this review, we apply the principles of evidence-based laboratory medicine (EBLM) looking for high quality systematic reviews and meta-analyses, ideally underpinned by randomized controlled trials (RCTs), looking for evidence of whether POCT confers any advantage in clinical decision making in different scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.