Pesticide pollution in water has been well described; however, little is known on pesticide accumulation by aquatic organisms, and to date, most studies in this line have been focused on persistent organochlorine pesticides. For this reason, a method based on QuEChERS extraction and subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed and validated for the determination of 52 medium to highly polar pesticides in fresh fish muscle. Target pesticides were selected on the basis of use and occurrence in surface waters. Quantification is carried out following an isotope dilution approach. The method developed is satisfactory in terms of accuracy (relative recovery between 71-120%), precision (relative standard deviation below 20.6%) and sensitivity (limits of determination in the pg/g or low ng/g f.w. range for most compounds). The application of the validated methodology to fish specimens collected from the Adige River (Italy) revealed the presence of trace levels of diazinon, dichlorvos and diuron, and measurable levels of metolachlor, quinoxyfen, irgarol, terbutryn, and acetamiprid, but in all cases at concentrations below the default maximum residue level of 10 ng/g established for pesticides not specifically regulated in fish. Metolachlor and quinoxyfen were both the most ubiquitous and abundant pesticides, in agreement with their high potential of bioaccumulation. Both are toxic to aquatic organisms, and therefore, their potential effects on aquatic ecosystems should be further explored.
The hydrological and biological complexity of temporary rivers as well as their importance in providing goods and services is increasingly recognized, as much as it is the vulnerability of the biotic communities in view of climate change and increased anthropogenic pressures. However, the effects of flow intermittency (resulting from both seasonal variations and rising hydrological pressure) and pollution on biodiversity and ecosystem functioning have been overlooked in these ecosystems. We explore the way multiple stressors affect biodiversity and ecosystem functioning, as well as the biodiversity-ecosystem functioning (B-EF) relationship in a Mediterranean temporary river. We measured diversity of benthic communities (i.e. diatoms and macroinvertebrates) and related ecosystem processes (i.e. resource use efficiency-RUE and organic matter breakdown-OMB) across a pollution and flow intermittency gradient. Our results showed decreases in macroinvertebrate diversity and the opposite trend in diatom assemblages, whereas ecosystem functioning was negatively affected by both pollution and flow intermittency. The explored B-EF relationships showed contrasting results: RUE decreased with higher diatom diversity, whereas OMB increased with increased macroinvertebrate diversity. The different responses suggest contrasting operating mechanisms, selection effects possibly driving the B-EF relationship in diatoms and complementarity effects driving the B-EF relationship in macroinvertebrates. The understanding of multiple stressor effects on diversity and ecosystem functioning, as well as the B-EF relationship in temporary rivers could provide insights on the risks affecting ecosystem functioning under global change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.