Flowers are colonized by and inhabited by diverse microbes. Plants rapidly replace flowers of short lifespan, and old flowers senesce. This may contribute to avoiding adverse effects of the microbes. In this study, we investigate if the flower microbial community on old flowers impedes fruit and seed production in a wild ginger with one-day flowers. We inoculated newly opened flowers with old flower microbes, and monitored the effects on fruit and seed set. We also assessed prokaryotic communities on the flowers using amplicon sequencing. We found five bacterial amplicon sequence variants (ASVs) whose proportions were increased on the inoculated flowers. These ASVs were also found on flower buds and flowers that were bagged by net or paper during anthesis. Fruit set was negatively associated with the proportions of these ASVs, while seed set was not. The results suggest that old flowers harbor microbial communities different from those at anthesis, and that the microbes abundant on old flowers negatively affect plant reproduction. Though the short lifespan of flowers has gotten little attention, it might be an essential defense mechanism to cope with antagonistic microbes that rapidly proliferate on the flowers.
Flowers are colonized and inhabited by diverse microbes. Flowers have various mechanisms to suppress microbial growth, such as flower volatiles, reactive oxygen and secondary compounds. Besides, plants rapidly replace flowers that have a short lifespan, and old flowers senesce. They may contribute to avoiding adverse effects of the microbes. In this study, we investigate if the flower microbial community on old flowers impedes fruit and seed production in a wild ginger with one-day flowers. We focus on microbes on old flowers because they may be composed of microbes that would grow during flowering if the flowers did not have mechanisms to suppress microbial growth. We inoculated newly opened flowers with old flower microbes, and monitored the effects on fruit and seed set. We also assessed prokaryotic communities on the flowers using 16S rRNA amplicon sequencing. We found six bacterial amplicon sequence variants (ASVs) whose proportions were increased on the inoculated flowers. These ASVs were also found on flower buds and flowers that were bagged by net or paper during anthesis, suggesting that they had been present in small numbers prior to flowering. Fruit set was negatively associated with the proportions of these ASVs, while seed set was not. The results suggest that old flowers harbor microbial communities different from those at anthesis, and that the microbes abundant on old flowers negatively affect plant reproduction. Although it has received little attention, antagonistic microbes that rapidly proliferate on the flowers may have affected the evolution of various flower characteristics such as flower volatiles and life span.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.