Seedlessness is greatly prized by consumers of fresh grapes. While stenospermocarpic seed abortion determined by the () locus is the usual source of seedlessness in commercial grapevine () cultivars, the underlying mutation remains unknown. Here, we undertook an integrative approach to identify the causal mutation. Quantitative genetics and fine-mapping in two 'Crimson Seedless'-derived F1 mapping populations confirmed the major effect of the locus and delimited the mutation to a 323-kb region on chromosome 18. RNA-sequencing comparing seed traces of seedless and seeds of seeded F1 individuals identified processes triggered during-determined seed abortion, including the activation of salicylic acid-dependent autoimmunity. The RNA-sequencing data set was investigated for candidate genes, and while no evidence for causal cis-acting regulatory mutations was detected, deleterious nucleotide changes in coding sequences of the seedless haplotype were predicted in two genes within the fine-mapping interval. Targeted resequencing of the two genes in a collection of 124 grapevine cultivars showed that only the point variation causing the arginine-197-to-leucine substitution in the seed morphogenesis regulator gene () was fully linked with stenospermocarpy. The concurrent postzygotic variation identified for this missense polymorphism and seedlessness phenotype in seeded somatic variants of the original stenospermocarpic cultivar supports a causal effect. We postulate that seed abortion caused by this amino acid substitution in VviAGL11 is the major cause of seedlessness in cultivated grapevine. This information can be exploited to boost seedless grape breeding.
BackgroundUnderstanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genome-wide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant.ResultsWe have designed and constructed a publicly available genome-wide cDNA microarray that include 21,081 putative unigenes of citrus. As a functional companion to the microarray, a web-browsable database [1] was created and populated with information about the unigenes represented in the microarray, including cDNA libraries, isolated clones, raw and processed nucleotide and protein sequences, and results of all the structural and functional annotation of the unigenes, like general description, BLAST hits, putative Arabidopsis orthologs, microsatellites, putative SNPs, GO classification and PFAM domains. We have performed a Gene Ontology comparison with the full set of Arabidopsis proteins to estimate the genome coverage of the microarray. We have also performed microarray hybridizations to check its usability.ConclusionThis new cDNA microarray replaces the first 7K microarray generated two years ago and allows gene expression analysis at a more global scale. We have followed a rational design to minimize cross-hybridization while maintaining its utility for different citrus species. Furthermore, we also provide access to a website with full structural and functional annotation of the unigenes represented in the microarray, along with the ability to use this site to directly perform gene expression analysis using standard tools at different publicly available servers. Furthermore, we show how this microarray offers a good representation of the citrus genome and present the usefulness of this genomic tool for global studies in citrus by using it to catalogue genes expressed in citrus globular embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.