Citation for published item:fryntD tFtF nd ywersD wFF nd oothmD eFFqF nd groomD FwF nd hriverD FF nd hrinkwterD wFtF nd vorenteD xFFpF nd gorteseD vF nd ottD xF nd gollessD wF nd heferD eF nd ylorD iFxF nd uonstntopoulosD sFF nd ellenD tFF nd fldryD sF nd frnesD vF nd fuerD eFiF nd flndErwthornD tF nd floomD tFF nd frooksD eFwF nd froughD F nd geilD qF nd gouhD F nd grotonD hF nd hviesD F nd illisD F nd pogrtyD vFwFF nd posterD gF nd qlzerookD uF nd qoodwinD wF nd qreenD eF nd qunwrdhnD wFvF nd rmptonD iF nd roD sFEF nd ropkinsD eFwF nd uewleyD vF nd vwreneD tFF nd veonEvlD FqF nd veslieD F nd wilroyD F nd vewisD qF nd viskeD tF nd v¡ opezE¡ nhezD ¡ eFF nd whjnD F nd wedlingD eFwF nd wetlfeD xF nd weyerD wF nd wouldD tF nd yreshkowD hF nd y9ooleD F nd ryD wF nd ihrdsD FxF nd hnksD F nd hrpD F nd weetD FwF nd homsD eFhF nd oniniD gF nd lherD gFtF @PHISA 9he ews qlxy urvey X instrument spei(tion nd trget seletionF9D wonthly noties of the oyl estronomil oietyFD RRU @QAF ppF PVSUEPVUWF Further information on publisher's website: Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. ABSTRACTThe SAMI Galaxy Survey will observe 3400 galaxies with the Sydney-AAO Multi-object Integral-field spectrograph (SAMI) on the Anglo-Australian Telescope in a 3-yr survey which began in 2013. We present the throughput of the SAMI system, the science basis and specifications for the target selection, the survey observation plan and the combined properties of the selected galaxies. The survey includes four volume-limited galaxy samples based on cuts in a proxy for stellar mass, along with low-stellar-mass dwarf galaxies all selected from the Galaxy And Mass Assembly (GAMA) survey. The GAMA regions were selected because of the vast array of ancillary data available, including ultraviolet through to radio bands. These fields are on the celestial equator at 9, 12 and 14.5 h, and cover a total of 144 deg 2 (in GAMA-I). Higher density environments are also included with the addition of eight clusters. The clusters have spectroscopy from 2-degree Field Galaxy Redshift Survey (2dFGRS) and Sloan Digital Sky Survey (SDSS) and photometry in regions covered by the SDSS and/or VLT Survey Telescope/ATLAS. The aim is to cover a broad range in stellar mass and environment, and therefore the primary survey targets cover redshifts 0.004 < z < 0.095, magnitudes r pet < 19.4, stellar masses 10 7 -10 12 M , and environments from isolated field galaxies through groups to clusters of ∼10 15 M .
We present the Early Data Release of the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. The SAMI Galaxy Survey is an ongoing integral field spectroscopic survey of ∼3400 low-redshift (z < 0.12) galaxies, covering galaxies in the field and in groups within the Galaxy And Mass Assembly (GAMA) survey regions, and a sample of galaxies in clusters.In the Early Data Release, we publicly release the fully calibrated datacubes for a representative selection of 107 galaxies drawn from the GAMA regions, along with information about these galaxies from the GAMA catalogues. All datacubes for the Early Data Release galaxies can be downloaded individually or as a set from the SAMI Galaxy Survey website.In this paper we also assess the quality of the pipeline used to reduce the SAMI data, giving metrics that quantify its performance at all stages in processing the raw data into calibrated datacubes. The pipeline gives excellent results throughout, with typical sky subtraction residuals in the continuum of 0.9-1.2 per cent, a relative flux calibration uncertainty of 4.1 per cent (systematic) plus 4.3 per cent (statistical), and atmospheric dispersion removed with an accuracy of 0. 09, less than a fifth of a spaxel.
We present a methodology for the regularisation and combination of sparse sampled and irregularly gridded observations from fibre-optic multi-object integral-field spectroscopy. The approach minimises interpolation and retains image resolution on combining sub-pixel dithered data. We discuss the methodology in the context of the Sydney-AAO Multi-object Integralfield spectrograph (SAMI) Galaxy Survey underway at the Anglo-Australian Telescope. The SAMI instrument uses 13 fibre bundles to perform high-multiplex integral-field spectroscopy across a one degree diameter field of view. The SAMI Galaxy Survey is targeting ∼3000 galaxies drawn from the full range of galaxy environments. We demonstrate the subcritical sampling of the seeing and incomplete fill factor for the integral-field bundles results in only a 10% degradation in the final image resolution recovered. We also implement a new methodology for tracking covariance between elements of the resulting datacubes which retains 90% of the covariance information while incurring only a modest increase in the survey data volume.
We present the second major release of data from the SAMI Galaxy Survey. Data Release Two includes data for 1559 galaxies, about 50% of the full survey. Galaxies included have a redshift range 0.004 < z < 0.113 and a large stellar mass range 7.5 < log(M /M ) < 11.6. The core data for each galaxy consist of two primary spectral cubes covering the blue and red optical wavelength ranges. For each primary cube we also provide three spatially binned spectral cubes and a set of standardised aperture spectra. For each core data product we provide a set of value-added data products. This includes all emission line value-added products from Data Release One, expanded to the larger sample. In addition we include stellar kinematic and stellar population value-added products derived from absorption line measurements. The data are provided online through Australian Astronomical Optics' Data Central. We illustrate the potential of this release by presenting the distribution of ∼ 350, 000 stellar velocity dispersion measurements from individual spaxels as a function of R/R e , divided in four galaxy mass bins. In the highest stellar mass bin (log(M /M ) > 11), the velocity dispersion strongly increases towards the centre, whereas below log(M /M ) < 10 we find no evidence for a clear increase in the central velocity dispersion. This suggests a transition mass around log(M /M ) ∼ 10 for galaxies with or without a dispersion-dominated bulge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.