Purpose Germline mutations in DNA damage repair (DDR) genes are identified in a significant proportion of patients with metastatic prostate cancer, but the clinical implications of these genes remain unclear. This prospective multicenter cohort study evaluated the prevalence and effect of germline DDR (gDDR) mutations on metastatic castration-resistance prostate cancer (mCRPC) outcomes. Patients and Methods Unselected patients were enrolled at diagnosis of mCRPC and were screened for gDDR mutations in 107 genes. The primary aim was to assess the impact of ATM/BRCA1/BRCA2/ PALB2 germline mutations on cause-specific survival (CSS) from diagnosis of mCRPC. Secondary aims included the association of gDDR subgroups with response outcomes for mCRPC treatments. Combined progression-free survival from the first systemic therapy (PFS) until progression on the second systemic therapy (PFS2) was also explored. Results We identified 68 carriers (16.2%) of 419 eligible patients, including 14 with BRCA2, eight with ATM, four with BRCA1, and none with PALB2 mutations. The study did not reach its primary end point, because the difference in CSS between ATM/BRCA1/BRCA2/PALB2 carriers and noncarriers was not statistically significant (23.3 v 33.2 months; P = .264). CSS was halved in germline BRCA2 (g BRCA2) carriers (17.4 v 33.2 months; P = .027), and g BRCA2 mutations were identified as an independent prognostic factor for CCS (hazard ratio [HR], 2.11; P = .033). Significant interactions between g BRCA2 status and treatment type (androgen signaling inhibitor v taxane therapy) were observed (CSS adjusted P = .014; PFS2 adjusted P = .005). CSS (24.0 v 17.0 months) and PFS2 (18.9 v 8.6 months) were greater in g BRCA2 carriers treated in first line with abiraterone or enzalutamide compared with taxanes. Clinical outcomes did not differ by treatment type in noncarriers. Conclusion g BRCA2 mutations have a deleterious impact on mCRPC outcomes that may be affected by the first line of treatment used. Determination of g BRCA2 status may be of assistance for the selection of the initial treatment in mCRPC. Nonetheless, confirmatory studies are required before these results can support a change in clinical practice.
Cardiac angiosarcoma (CAS) is a rare malignant tumour whose genetic basis is unknown. Here we show, by whole-exome sequencing of a TP53-negative Li–Fraumeni-like (LFL) family including CAS cases, that a missense variant (p.R117C) in POT1 (protection of telomeres 1) gene is responsible for CAS. The same gene alteration is found in two other LFL families with CAS, supporting the causal effect of the identified mutation. We extend the analysis to TP53-negative LFL families with no CAS and find the same mutation in a breast AS family. The mutation is recently found once in 121,324 studied alleles in ExAC server but it is not described in any other database or found in 1,520 Spanish controls. In silico structural analysis suggests how the mutation disrupts POT1 structure. Functional and in vitro studies demonstrate that carriers of the mutation show reduced telomere-bound POT1 levels, abnormally long telomeres and increased telomere fragility.
Technical advances in genome sequencing and the implementation of next-generation sequencing (NGS) in clinical oncology have paved the way for individualizing cancer patient therapy based on molecular profiles. When and how to use NGS testing in the clinic is at present an unsolved issue, although new research results provide evidence favoring this approach in some types of advanced cancer. Clinical research is evolving rapidly, from basket and umbrella trials to adaptative design precision oncology clinical studies, and genomic and molecular data often displace the classical clinical validation procedures of biomarkers. In this context, physicians must be aware of the clinical evidence behind these new biomarkers and NGS tests available, in order to use them in the right moment, and with a critical point of view. This review will present the status of currently available targeted drugs that can be effective based on actionable molecular alterations, and the NGS tests that are currently available, offering a practical guide for the application of Clinical Precision Oncology in the real world routine practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.