The orientation and distribution of reinforcing particles in artificial composites are key to enable effective reinforcement of the material in mechanically loaded directions, but remain poor if compared to the distinctive architectures present in natural structural composites such as teeth, bone, and seashells. We show that micrometer-sized reinforcing particles coated with minimal concentrations of superparamagnetic nanoparticles (0.01 to 1 volume percent) can be controlled by using ultralow magnetic fields (1 to 10 milliteslas) to produce synthetic composites with tuned three-dimensional orientation and distribution of reinforcements. A variety of structures can be achieved with this simple method, leading to composites with tailored local reinforcement, wear resistance, and shape memory effects.
Calcein was delivered from a functional coating into viable cells on top of it, upon the application of an electrochemical stimulus. The dye was loaded in liposomes stably embedded in a sandwich of polyelectrolyte multilayers. The covering multilayer was optimized with respect to its chemical composition to be resistant to galvanostatic conditions and to allow for cell growth. Additionally, spatial control over the release was achieved by two different patterning methods: (1) coating the indium tin oxide electrode by a micro-patterned insulator and (2) directly patterning the electrode. The release kinetics could be tuned by regulating the current density.
Load-bearing reinforcing elements in a continuous matrix allow for improved mechanical properties and can reduce the weight of structural composites. As the mechanical performance of composite systems are heavily affected by the interfacial properties, tailoring the interactions between matrices and reinforcing elements is a crucial problem. Recently, several studies using bio-inspired model systems suggested that interfacial mechanical interlocking is an efficient mechanism for energy dissipation in platelet-reinforced composites. While cheap and effective solutions are available at the macroscale, the modification of surface topography in micron-sized reinforcing elements still represents a challenging task. Here, we report a simple method to create nanoasperities with tailored sizes and densities on the surface of alumina platelets and investigate their micromechanical effect on the energy dissipation mechanisms of nacre-like materials. Composites reinforced with roughened platelets exhibit improved mechanical properties for both organic ductile epoxy and inorganic brittle cement matrices. Mechanical interlocking increases the modulus of toughness (area under the stress-strain curve) by 110% and 56% in epoxy and cement matrices, respectively, as compared to those reinforced with flat platelets. This interlocking mechanism can potentially lead to a significant reduction in the weight of mechanical components while retaining the structural performance required in the application field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.