Cardiovascular disease (CVD) is the leading cause of death in chronic kidney disease (CKD). One of the most important pathophysiological mechanisms for CVD in patients with CKD is the widespread and possibly accelerated formation of atherosclerotic plaques due to hyperlipidemia, uremic toxins, inflammation, oxidative stress, and endothelial dysfunction. Recent studies showed that the level of oxidized low-density lipoprotein cholesterol increases, and that high-density lipoprotein cholesterol dysfunction occurs as kidney function declines and inflammation becomes more prevalent. In this review, we aimed to discuss the effect of kidney dysfunction, oxidative stress, and inflammation on lipid profile.
Hyperglycemia leads to excess production of reactive oxygen species (ROS), lipid peroxidation and protein glycation that may impair cellular calcium homeostasis and results in calcium sequestration and dysfunction in diabetic tissues. Stobadine (ST) is a pyridoindole antioxidant has been postulated as a new cardio- and neuroprotectant. This study was undertaken to test the hypothesis that the treatment with ST inhibits calcium accumulation, reduces lipid peroxidation and protein glycation and can change Ca2+,Mg2+-ATPase activity in diabetic animals. The effects of vitamin E treatment were also evaluated and compared with the effects of combined treatment with ST. Diabetes was induced by streptozotocin (STZ, 55 mg/kg i.p.). Some of diabetic rats and their age-matched controls were treated orally with a low dose of ST (24.7 mg/kg/day), vitamin E (400-500 IU/kg/day) or ST plus vitamin E for 10 weeks. ST and vitamin E separately produced, in a similar degree, reduction in diabetes-induced hyperglycemia. Each antioxidant alone significantly lowered the levels of plasma lipid peroxidation, cardiac and hepatic protein glycation in diabetic rats but vitamin E treatment was found to be more effective than ST treatment alone. Diabetes-induced increase in plasma triacylglycerol levels was not significantly altered by vitamin E treatment but markedly reduced by ST alone. The treatment with each antioxidant completely prevented calcium accumulation in diabetic heart and liver. Microsomal Ca2+,Mg2+-ATPase activity significantly decreased in both tissues of untreated diabetic rats. ST alone significantly increased microsomal Ca2+,Mg2+-ATPase activity in the heart of normal rats. However, neither treatment with ST nor vitamin E alone, nor their combination did change cardiac Ca2+,Mg2+-ATPase activity in diabetic heart. In normal rats, neither antioxidant had a significant effect on hepatic Ca2+,Mg2+-ATPase activity. Hepatic Ca2+,Mg2+-ATPase activity of diabetic rats was not changed by single treatment with ST, while vitamin E alone completely prevented diabetes-induced inhibition in microsomal Ca2+,Mg2+-ATPase activity in liver. Combined treatment with ST and vitamin E provided more benefits in the reduction of hyperglycemia and lipid peroxidation in diabetic animals. This study describes potential mechanisms on cellular effects of ST in the presence of diabetes-induced hyperglycemia that may delay or inhibit the development of diabetic complications. The use of ST together with vitamin E can better control hyperglycemia-induced oxidative stress.
Glutathione reductase (GR, NADPH: oxidized glutathione oxidoreductase, EC 1.6.4.2) catalyzes the reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH) using NADPH as reducing cofactor. The aim of the present work was to purify and characterize GR from bovine liver. GR was purified using 2', 5' ADP-Sepharose 4B and DEAE-Sepharose Fast Flow columns. The enzyme has been purified 5456-fold and with a yield of 38.4%. The molecular and catalytic properties of bovine liver GR have been studied. Optimum temperature and pH was found to be 50 degrees C and 7, respectively. The activation energy of the reaction catalyzed by the enzyme was 9.065 kcal/mole. The molecular weight of the enzyme was found to be 55 kDa by SDS-PAGE. Kinetic characterization of bovine liver GR was also investigated, Km(NADPH) 0.063 +/- 0.008 mM and Km(GSSG) 0.154 +/- 0.015 mM were determined. It is accepted that parallel lines observed in these double reciprocal plots obeys Ping Pong mechanism and we have showed this in our steady state study. According to our results of statistical analysis, the Ping Pong mechanism is a suitable model since the loss function is less than the other mechanisms. However, competitive inhibition by a product could be accepted in sequential mechanisms but not in a Ping Pong mechanism. In this study, kinetic data are consistent with a branching reaction mechanism previously proposed for GR from other sources by other studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.