BackgroundThe aim of this study was to identify mutations of rpoB, katG, inhA and ahp-genes associated Mycobacterium tuberculosis resistance to rifampicin (RIF) and isoniazid (INH) in Kyrgyz Republic. We studied 633 smear samples from the primary pulmonary tuberculosis (TB) patients. We verified Mycobacterium tuberculosis susceptibility to RIF and INH using culture method of absolute concentrations, and commercially available test named “TB-BIOCHIP” (Biochip-IMB, Moscow, Russian Federation).ResultsFor RIF-resistance, TB-BIOCHIP’s sensitivity and specificity were 88% and 97%, 84% and 95% for INH-resistance, and 90% and 97% for multi-drug resistance (MDR). In RIF-resistant strains, TB-BIOCHIP showed mutations in codons 531 (64.8%), 526 (17.3%), 516 (8.1%), 511 (5.4%), 533 (3.2%), 522 (0.6%) and 513 (0.6%) of rpoB gene. The most prevalent was Ser531 > Leu mutation (63.7%). 91.2% of mutations entailing resistance to INH were in katG gene, 7% in inhA gene, and 1.8% in ahpC gene. Ser315→Thr (88.6%) was the most prevalent mutation leading to resistance to INH.ConclusionsIn Kyrgyz Republic, the most prevalent mutation in RIF-resistant strains was Ser531 → Leu in rpoB gene, as opposed to Ser315 → Thr in katG gene in INH-resistant Mycobacterium tuberculosis. In Kyrgyz Republic, the major reservoir of MDR Mycobacterium tuberculosis were strains with combined mutations Ser531 → Leu in rpoB gene and Ser315 → Thr in katG gene. TB-BIOCHIP has shown moderate sensitivity with the advantage of obtaining results in only two days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.