The present study was designed to investigate the potential of raw-extract of Centella asiatica (RECA) in suppressing acetylcholinesterase (AChE), inflammations and oxidative stress via induction of lipopolysaccharide (LPS) on animal model of Sprague Dawley rats. Centella asiatica is a plant that has been used as a traditional herbal remedy for the management of several diseases, including memory improvement, treatment of mental fatigue and wound healing. Pre-treatment with RECA in vitro significantly reduced the AChE activity in a concentration-dependent manner with IC50 value of 57.47 ± 13.55 µg/ml. Interestingly, this result was parallel with in vivo studies. Moreover, the level of pro-inflammatory cytokines and oxidative stress were significantly reduced by RECA in dose-dependent manner. Overall, our findings clearly dictate the potential of RECA as AChE inhibitor as well anti-inflammatory and anti-oxidant agents.
Neurotoxicity induced by a psychostimulant drug, methamphetamine (METH) is associated with devastating and persistent neurotoxicity effects on the central nervous system (CNS). Centella asiatica (CA) is known as an antioxidant and neuroprotective agent. However, there is a limited study on natural-derived therapeutic to attenuate neurotoxicity induced by METH. We aimed to investigate the effects of METH and ethanol extract CA (CAE) on motor performance of animal model and the expression of manganese superoxide dismutase II (SOD2) and microRNA-34a (miR-34a) in the brain tissue. Male Sprague-Dawley rats were administered with METH (50 mg/kg per body weight) twice per day for 4 days, CAE (300 mg/kg & 500 mg/kg per body weight for 21 days and combination of METH and CAE for 21 day(s). Weight of rat was measured and motor performance was evaluated using vertical pole and narrow beam tests. Expression of SOD2 and miR-34a were measured using Quantitative Real-time Polymerase Chain Reaction (RT-qPCR). Group III (300 mg/kg CAE); p<0.001, Group IV (500 mg/kg CAE); p<0.001, Group V (METH+300 mg/kg CAE); p<0.01 and Group VI (METH+500 mg/kg CAE); p<0.01 significantly improved latency in the vertical pole test compared to METH group. Meanwhile, Group III (300 mg/kg CAE); p<0.001 and Group IV (500 mg/kg CAE); p<0.001 significantly decreased latency in the narrow beam test compared to METH. Post-treatment of CAE on METH-treated rats, Group V (METH+300 mg/kg CAE) and Group VI (METH+500 mg/kg CAE) non-significantly upregulated the SOD2 expression by 3.78±1.03 and 4.05±0.19 folds compared to METH, respectively. Post-treatment of CAE on METH-treated rats, Group V (METH+300 mg/kg CAE) and Group VI (METH+500 mg/kg CAE) non-significantly upregulated the miR-34a expression by (7.02±3.73) and (6.75±1.94) folds compared to METH, respectively. CAE could be suggested as a promising natural-derived therapeutic for METH-induced neurotoxicity to ameliorating motor performance and triggering SOD2 and miR-34a expression.
Methamphetamine (METH) was reported to caused neurotoxicity and cell death, in vitro. Centella asiatica or ‘pegaga’ is a native tropical herb with antioxidant and neuroprotective activities. Although the effects of Centella asiatica against oxidative stress and neuronal cell death have been reported in previous studies, however, the potential effects of Centella asiatica against psychostimulant methamphetamine (METH) are limited. Therefore, this study was aimed to evaluate the effects of Centella asiatica extract (CAE) against METH on all-trans retinoic acid, RA-differentiated human neuroblastoma, SH-SY5Y cells. The RA-differentiated SH-SY5Y cells were used to resemble dopaminergic neuronal-like cells. Cell viability was quantitatively assessed by 3-(4,5-dimethylthiazol-2-yl)-2 tetrazolium bromide, MTS assay. CAE at varying concentrations from 1pg/mL to 1mg/mL significantly decreased the viability of the undifferentiated SH-SY5Y cells in a concentration-dependent manner. At 1mg/mL of CAE, significantly increased the viability of differentiated SH-SY5Y cells. Meanwhile, CAE at 100µg/mL and 1mg/mL significantly reversed the METH-induced neuronal cell death. The results revealed that promising treatment of CAE on METH-induced neurotoxicity is mediated by its high content of asiaticoside, asiatic acid, madecassoside and madecassic acid. Taken together, this study may suggest CAE as a potential therapeutic treatment for METH-induced neurotoxicity, in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.