An alcoholysis reaction between triolein and oleyl alcohol catalyzed by Lipozyme and Novozyme was carried out to produce oleyl oleate, a wax ester. The effects of various reaction parameters such as time, reaction temperature, amount of enzyme, molar ratio of substrates (oleyl alcohol/triolein), various organic solvents used and the initial water activity, a w of the reaction system were studied. The best conditions tested to produce wax ester were respectively, incubation time, 5 h; temperature, 50°C for Lipozyme and 60°C for Novozyme; weight of enzyme, 0.30 g and molar ratio of oleyl alcohol to triolein, 6:1. The use of organic solvents greatly in¯uenced the activity of lipase. Generally, the activity of lipase was high in nonpolar solvents with log P values greater than 2.50. Heptane and hexane were the best solvents tested. The enzymatic synthesis of oleyl oleate was best carried out at a w 0.32. Analysis of the yield of the products of the reaction at optimized reaction condition using Lipozyme showed that 75.66% oleyl oleate was produced.
Abstract. Fatty acid esters are long-chain esters, produced from the reaction of fatty acids and alcohols. They possess potential applications in cosmetic and pharmaceutical formulations due to their excellent wetting behaviour at interfaces and a non-greasy feeling when applied on the skin surfaces. This preliminary work was carried out to construct pseudo-ternary phase diagrams for oleyl laurate, oleyl stearate and oleyl oleate with surfactants and piroxicam. Then, the preparation and optimization study via 'One-At-ATime Approach' were carried out to determine the optimum amount of oil, surfactants and stabilizer using low-energy emulsification method. The results revealed that multi-phase region dominated the three pseudo-ternary phase diagrams. A composition was chosen from each multi-phase region for preparing the nanoemulsions systems containing piroxicam by incorporating a hydrocolloid stabilizer. The results showed that the optimum amount (w/w) of oil for oleyl laurate nanoemulsions was 30 and 20 g (w/w) for oleyl stearate nanoemulsions and oleyl oleate nanoemulsions. For each nanoemulsions system, the amount of mixed surfactants and stabilizer needed for the emulsification to take place was found to be 10 and 0.5 g (w/w), respectively. The emulsification process via high-energy emulsification method successfully produced nano-sized range particles. The nanoemulsions systems passed the centrifugation test and freeze-thaw cycle with no phase failures, and stable for 3 months at various storage temperatures (3°C, 25°C and 45°C). The results proved that the prepared nanoemulsions system cannot be formed spontaneously, and thus, energy input was required to produce nano-sized range particles.
Optimization of the lipase catalyzed enzymatic synthesis of betulinic acid amide in the presence of immobilized lipase, Novozym 435 from Candida antartica as a biocatalyst was studied. Response surface methodology (RSM) and 5-level-4-factor central-composite rotatable design (CCRD) were employed to evaluate the effects of the synthesis parameters, such as reaction time (20–36 h), reaction temperature (37–45 °C), substrate molar ratio of betulinic acid to butylamine (1:1–1:3), and enzyme amounts (80–120 mg) on the percentage yield of betulinic acid amide by direct amidation reaction. The optimum conditions for synthesis were: reaction time of 28 h 33 min, reaction temperature of 42.92 °C, substrate molar ratio of 1:2.21, and enzyme amount of 97.77 mg. The percentage yield of actual experimental values obtained 65.09% which compared well with the maximum predicted value of 67.23%. The obtained amide was characterized by GC, GCMS and 13C NMR. Betulinic acid amide (BAA) showed a better cytotoxicity compared to betulinic acid as the concentration inhibited 50% of the cell growth (IC50) against MDA-MB-231 cell line (IC50 < 30 µg/mL).
Betulinic acid amide was synthesized from the enzymatic reaction of betulinic acid and butylamine catalysed by Novozym 435. The effects of different reaction parameters, such as effect of reaction time, reaction temperature, amount of enzyme, and substrate molar ratio (betulinic acid : butylamine), were studied and conventionally optimised. Based on this study, the enzymatic synthesis of betulinic acid amide was found to be 64.6% at the optimum conditions of 24 h, 40°C, 100 mg enzyme, and 1 : 1 substrate molar ratio in 9 : 1 mixture of chloroform and hexane as solvent. The identification of final product was carried out using TLC, melting point, and FTIR and NMR showed the presence of betulinic acid amide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.