This research was conducted to obtain a numerical solution of the mathematical model of string vibration on stringed instruments. This mathematical model is a representation of the phenomenon of string vibration on a stringed instrument subject to deviation. The model was constructed by Kusumastuti, et al (2017) and is in the form of a second-order partial differential equation. The method used in completing this research is the BTCS (Backward Time Central Space) method. The numerical solution is obtained by the following steps, 1). Discretize mathematical models, as well as discretize initial conditions and boundary conditions. 2). Performing stability analysis of numerical solutions to determine the terms of solution stability and conducting consistency analysis as a condition of the convergence of the obtained numerical solutions. 3). Simulate numerical solutions and perform graph interpretations. The results show that the numerical solution of the mathematical model of string vibration on stringed instruments is unconditionally stable and has an error order (〖∆x〗^2,〖∆t〗^3).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.