This paper presented a computational fluid dynamics (CFD) simulation of air flow past a 2D model NACA0012 airfoil at high Reynolds number (Re = 3.0 x 10 6 ) at various angles of attack (-10 to 15). The simulations were undertaken to inform on how the fluid flowed around the airfoil by solving the steady state governing equations of continuity and momentum conservation that are combined with one of three turbulence models Spalart-Allmaras, Realizable k-ε and k-ω shear stress transport (SST). It is observed that the Realizable k-ε eliminates the small separation bubble on the upper surface of the airfoil and delaying separation flow. Also, for the lift coefficient, CL and drag coefficient, CD investigated in this paper, the predicted data have good agreement with other published data.
The unsteady three dimensional flow simulation around sphere using numerical simulation computational fluid dynamic for moderate Reynolds Number between 20 ≤ Re ≤ 500 is presented. The aim of this work is to analyze the flow regimes around sphere and flow separation. Extensive comparisons were made between the present predicted results and available experimental and numerical investigations, and showed that they are in close agreement. The results show that the vortex shedding increases with the Reynolds number. The flow separates early when Reynolds number increases, therefore the separation angle is found to be smaller when high Reynolds number is present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.