A brief review on the dielectric properties of grain and their use in sensing moisture content is presented. Dielectric constant and loss factor were defined generally, and their correlation with grain permittivity from historical studies is presented. References are cited on dielectric measurement techniques using various frequency ranges from radio frequency through microwave frequencies. The described techniques including from the past decades until current studies.
This manuscript presents a new method to monitor and localize the moisture distribution in a rice silo based on tomography images. Because the rice grain is naturally hygroscopic, the stored grains’ quality depends on their level of moisture content. Higher moisture content leads to fibre degradation, making the grains too frail and possibly milled. If the moisture is too low, the grains become brittle and are susceptible to higher breakage. At present, the single-point measurement method is unreliable because the moisture build-up inside the silo might be distributed unevenly. In addition, this method mostly applies gravimetric analysis, which is destructive. Thus, we proposed a radio tomographic imaging (RTI) system to address these problems. Four simulated phantom profiles at different percentages of moisture content were reconstructed using Newton’s One-Step Error Reconstruction and Tikhonov Regularization algorithms. This simulation study utilized the relationship between the maximum voxel weighting of the reconstructed RTI image and the percentage of moisture content. The outcomes demonstrated promising results, in which the weighting voxel linearly increased with the percentage of moisture content, with a correlation coefficient higher than 0.95 was obtained. Therefore, the results support the possibility of using the RTI approach for monitoring and localizing the moisture distribution inside the rice silo.
The growing significance of cancerous tissue including brain tumour requires a fast and efficient technology detection. The most current technologies being applied for brain imaging system are Computed Tomography (CT) scan and Magnetic Resonance Imaging (MRI). Whilst these two detection applications are very well established, both systems are expensive, time and space consuming, and raise safety issues to patients due to the radiation and strong magnetic effects. This research aims to assess the feasibility and potential performance of microwave tomography (MWT) for brain imaging with a particular focus on brain tumour detection. The study was conducted using Finite Element Model software, COMSOL Multiphysics to develop a 2D modelling of an antenna array and measure the scattered electric field by solving forward problem. MATLAB software will be used as an inverse problem solver to reconstruct 2D images of the tumour by using Linear Back Projection (LBP) algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.