Various types of strain sensors have been developed for providing reliable monitoring of human health. Microfluidic strain sensors is favourable for such an application due to its outstanding performance under a variety of three-dimensional deformations on the basis of elastic channel deformation. In this study, we report for the first time laser-machined micro-channels on fabricated epoxy substrate. Fabrication of flexible microfluidic sensor using soft clear epoxy is investigated. A ratio of 100:30 of epoxy resin-to-hardener results in a flexible and elastic epoxy layer. Laser micromachining (ablation) technique at varying parameters is conducted using Taguchi Experimental Design. Low number of passes for both kerf depth and kerf width gives an optimum response, while laser power and laser cutting speed differs for kerf width and kerf depth. Microstructure imaging is carried out using scanning electron microscopy for heat-affected zone examination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.