The emergence of multidrug-resistance Enterobacteriaceae such as extended-spectrum β-lactamase (ESBL) producing Escherichia coli (E. coli) and carbapenem-resistant E. coli (CREC) has become an urgent veterinary and public health threat. These multidrug-resistant microorganisms are frequently associated with diseases that have high mortality with limited treatment options. This study aims to investigate the prevalence of ESBL producing E. coli and CREC from the rabbit, swine, and poultry and to determine the antibiogram profile of these E. coli isolates. In this study, 400 fecal swab samples were collected from rabbits, swine, and poultry from several selected animal farms in Malaysia. After incubation and isolation processes, suspected E. coli isolates were subjected to a PCR test to confirm the identity of the bacteria. The antibiogram of the E. coli isolates was determined via the Kirby Bauer disk diffusion method. A total of 212 (53%) E. coli isolates were isolated from rabbits (51 isolates), poultry (110 isolates), and swine (51 isolates). Screening of antimicrobial resistance genes revealed twelve ESBL producing E. coli (3%; 12/400). Two ESBL producing E. coli were also carrying carbapenemase gene (Bla NDM ), indicating ESBL producing and carbapenem-resistant E. coli (ESBL-CREC) in poultry fecal swab samples. The bacteria isolates were found to show resistance against nine antibiotics, including ertapenem, ampicillin, and amoxicillin-clavulanate. A total of 3.3% (7/212) of the E. coli isolates were found to be multidrug-resistance. This study demonstrated the presence of ESBL-producing E. coli and ESBL-producing CREC from poultry fecal swabs in Malaysia.
Efficient strategies for phytase production gained increasing importance as more applications require high amounts of phytase for the market. Four phytase-producing bacterial strains isolated from Malaysia’s hot springs were used in this study to determine the effect of nitrogen sources on phytase production. All of the strains were screened out by applying halozone method which shows all of the strains were definitely positive phytase producer. Phytase Screening Medium (PSM) with soybean extract as substrate was used as a cultivation medium. Optimised condition with 1.0 % (w/v) of glucose (as carbon source), pH 5.5 and 37°C temperature was applied. Yeast extract and peptone were used to identify optimum nitrogen source in maximum phytase production. Quantitative analysis observed were optical density, colony forming unit, pH values and phytase activity to identify the effect of nitrogen source in phytase production. The finding was bacterial strain L3 as the best producer in producing maximum phytase (0.2162 U/mL) with optimised condition using yeast extract as nitrogen source. Findings in this study proved that yeast extract act as the optimum nitrogen source which contribute to maximum phytase production as supported by previous studies. This study can provide an efficient strategy to produce maximum phytase as few studies stated that phytase is an application tool in functional food production that consists of myo-inositol phosphates that is believed to have important pharmacological effects.
Animal feed from cereal grains and oilseed meals mainly containing phytic acid which has adverse effects on animal nutrition and its environment. Ruminants can easily digest the phytic acid as they have fungi and bacteria in their guts which can produce phytase to degrade the phytic acid. Meanwhile, phytic acid in non-ruminant animals is poorly digested due to the lack of sufficient phytase in their guts. Thus, the feed must be supplemented with inorganic phosphate to ensure it can absorb adequate nutrients. This study aimed to determine the effects of using different carbon sources to the growth of different strains of phytase producing bacteria based on optical density (OD), colony forming unit (CFU), and their phytase production. All four strains of potentially producing-phytase bacteria have been isolated from several hot springs in Malaysia. The bacteria were grown in modified Phytase Screening Medium (PSM) with glucose and lactose as a carbon source and under optimum culture conditions (pH 5.5, 37˚C, 200 rpm) for 72 hours. For quantitative screening of phytase production, the bacterial cultures were harvested to obtain the supernatants that were used to measure the amount of inorganic phosphorus released by the bacterial strains. Among these carbon sources, glucose has shown consistency between their CFU counts and the observed ODs whereas lactose shown inconsistency. Meanwhile, the maximum phytase activity was recorded for all strains in the presence of glucose in which bacteria strain L3 (0.0404 U/mL), RT (0.0359 U/mL), B9 (0.0262 U/mL), and A (0.0263 U/mL). As for the overall, strain L3 (Labis, Johor) gave a promising rate of inorganic phosphate released with optimum phytase activity value of 0.0404 U/mL in presence of glucose and lactose. The optimisation of the fermentation medium can contribute to more economical production of industrial enzyme as phytase has the potential to produce feed additives for poultry feeding.
In the recent research, the optimisation of culture condition for phytase production rarely done for Acetinobacter baumanii. The optimisation of the phytase production from the bacterial strains largely contributed by Bacillus sp. The study on the phytase originated from hot spring are limited and the species that identified from the hot spring samples are not in the same species from the previous study and mainly the species isolated from Bacillus sp. In this study, four potential strains of bacteria producing phytase isolated from hot spring in several regions in Malaysia. For enrichment of the bacterial, Nutrient Agar was used, meanwhile for batch culture optimisation, the bacteria producing phytase grown in modified liquid Phytase Screening Media with soy extract as agro residual substrate as a replacement for sodium phytate, the chemical substrate. The bacteria were screened for their ability to produce clear zone in solid PSM with sodium phytate as substrate. Optimisation of media through its physical factor that is pH of the media carried out using shake flask scale in laboratory. The growth of the bacterial strains and phytase activity measured quantitatively through the two different pH of media at pH 5.5 and pH 7. The analysis of colony-forming unit and pH determination after fermentation was carried out in this study. From the study, bacterial strain L3 from Labis, Johor has the highest phytase activity in the two parameters studied where the inorganic phosphate released at pH 5.5 (0.21953 U/mL) and pH 7 (0.2047 U/mL). Optimisation carried out through manipulating the culture condition that is pH of the media to determine at which condition has the highest phytase production. Several effects on enzyme activity caused by culture conditions identified. The optimisation of the fermentation medium able to contribute to the less cost production of the industrial enzyme as phytase has potential production for feed additives for poultry feeding. In the future research, molecular identification of the bacterial strains from the better-quality bacteria producing phytase grown in optimised culture media to investigate the molecular identity of the bacterial.
Mangifera sp. is a versatile plant that was reported to have various bioactivities, however only the fruits have gain popularity due to it sweet flesh and been known worldwide. It has a potential source of flavonoids and carotenoids, which makes them a nutritious functional food to consume. This study focused on determination of the total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity of the Mangifera sp. leaves extract in different water extraction methods. The TPC and TFC was determined by using Folin-Ciocalteu method and aluminium chloride method respectively while antioxidant activity was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and ferric reducing antioxidant power (FRAP) assay. Soxhlet extraction (SXE) produced the highest extraction yield compared to microwave extraction (MWE). MWE at 8 minutes extract showed the highest TPC (262.13±0.05 mg GAE/g). SXE showed the highest TFC (413.46±0.77 mg rutin/g). The highest antioxidant activity was recorded in MWE 8 minutes extract through DPPH and FRAP assays compared to other two MWE extract and SXE extract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.