Pentagamavunon-1 (PGV-1), a potential chemopreventive agent with a strong cytotoxic effect, modulates prometaphase arrest. Improvement to get higher effectiveness of PGV-1 is a new challenge. A previous study reported that the natural compound, galangin, has antiproliferative activity against cancer cells with a lower cytotoxicity effect. This study aims to develop a combinatorial treatment of PGV-1 and galangin as an anticancer agent with higher effectiveness than a single agent. In this study, 4T1, a TNBC model cell, was treated with a combination of PGV-1 and galangin. As a result, PGV-1 and galangin showed a cytotoxic effect with IC50 values of 8 and 120 µM, respectively. Combining those chemicals has a synergistic impact, as shown by the combination index (CI) value of 1. Staining with the May Grunwald-Giemsa reagent indicated mitotic catastrophe evidence, characterized by micronuclear and multinucleated morphology. Moreover, the senescence percentage was higher than the single treatment. Furthermore, bioinformatics investigations showed that PGV-1 and galangin target CDK1, PLK1, and AURKB, overexpression proteins in TNBC that are essential in regulating cell cycle arrest. In conclusion, the combination of PGV-1 and galangin exhibit a synergistic effect and potential to be a chemotherapeutic drug by the mechanism of mitotic catastrophe and senescence induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.