Organotin complexes are recognized as the biologically active compounds in inducing cancerous cells death at very low doses. To date, organotin compounds currently appear among the most potent candidates in research related to the new anticancer drugs. In this study, new organotin(IV) N-butyl-N-phenyldithiocarbamate compounds have been successfully synthesized between the reaction of N-butylaniline amine with organotin(IV) chloride in 1:2/1:1 molar ratio. All compounds were characterized using the elemental analysis, FT-IR and NMR spectroscopy. The single crystal structure was determined by X-ray single crystal analysis. The elemental analysis showed good agreement with the suggested formula (C4H9)2Sn[S2CN(C4H9)(C6H5)]2 (Compound 1 and 2), (C6H5)2Sn[S2CN(C4H9)(C6H5)]2 (Compound 3) and (C6H5)3Sn[S2CN(C4H9)(C6H5)] (Compound 4). The important infrared absorbance peaks, v (C = N) and v(C = S) were detected in range between 1457-1489 cm(-1) and 951-996 cm(-1), respectively. The chemical shift of carbon in NCS2 group obtained from 13C NMR was found in range 198.86-203.53 ppm. The crystal structure of compound 4 showed that the dithiocarbamate ligand coordinates in a monodentate fashion. It crystallized in monoclinic P2(1)/n space group with the crystal cell parameter: a = 10.0488(1) angstroms, b = 18.0008(2) angstroms, c = 15.2054(2) angstroms, beta = 102.442(1) degrees and R = 0.044. The cytotoxicity (IC50) of these compounds against Jurkat E6.1 and K-562 leukemia cells were in the range between 0.4-0.8 and 1.8-5.3 microM, respectively as assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazholium bromide (MTT) assay. In conclusion, our study demonstrate that all compounds showed potent cytotoxicity towards both cell lines tested with the triphenyltin(IV) compound displayed the greatest effect.
Organotin(IV) compounds have wide applications in industrial and agricultural fields owing to their ability to act as poly(vinyl chloride) stabilizers and catalytic agents as well as their medicinal properties. Moreover, organotin(IV) compounds may have applications as antitumor, anti-inflammatory, antifungal, or antimicrobial agents based on the observation of synergistic effects following the binding of their respective ligands, resulting in the enhancement of their biological activities. In this review, we describe the antiproliferative activities of organotin(IV) compounds in various human cancer cell lines based on different types of ligands. We also discuss the molecular mechanisms through which organotin(IV) compounds induce cell death via apoptosis through the mitochondrial intrinsic pathway. Finally, we present the mechanisms of cell cycle arrest induced by organotin(IV) compounds. Our report provides a basis for studies of the antitumor activities of organotin(IV) compounds and highlights the potential applications of these compounds as anticancer metallodrugs with low toxicity and few side effects.
Problem statement:The growing interest in the chemistry of sulphur donor ligands are due to their encouraging anticancer, antibacterial and antifungal activities as well as their widespread industrial application. Dithiocarbamates belong to this class and much attention has been paid to them. Approach: Novel organotin compounds with the molecular formula R m Sn[S 2 CN(CH 3 )(C 6 H 11 )] 4-m (where m = 2, R = CH 3 , C 2 H 5; m = 3, R = C 6 H 5 ) have been synthesized using in situ method. These compounds were characterized by elemental analysis, IR, 1 H and 13 C NMR spectroscopy. Results: Elemental analysis revealed that all compounds were of good purity. Infrared spectra of the compounds showed that the thioureide ν(C-N) band was in the region 1450-1500 cm .
Conclusion:The studied compounds were found to have the potential in biological activity especially in cytotoxicity where this possibly can be used for clinical trials after further research.
A skew trapezoidal bipyramidal coordination geometry based on a C2S4 donor set is found in the structure of (C6H5)2Sn[S2CN(Me)CH2CH2OMe]2, with the SnIV atom lying on a mirror plane.
A series of newly synthesized organotin (IV) with N-alkyl-N-phenyldithiocarbamate ligands namely triphenyltin (IV) ethylphenyldithiocarbamate (compound 1) and triphenyltin (IV) butylphenyldithiocarbamate (compound 2) were assessed for their cytotoxic effect against HT-29 human colon adenocarcinoma cells and human CCD-18Co normal colon cells. The cytotoxicity of these organotins in both cells was assessed using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazholium bromide (MTT) assay upon 24 h treatment. Both compounds demonstrated potent cytotoxicity towards HT-29 cells with the IC 50 of 0.18 µM for compound 1 and 0.20 µM for compound 2. Interestingly, compound 1 exhibited lower cytotoxicity towards CCD-18Co with IC 50 of 1.55 µM whereas no IC 50 was detected for compound 2 up to 2 µM treatment. The mode of cell death was determined based on the externalization of phosphatidylserine using flow cytometry. Cells treated with compound 1 and compound 2 were mainly viable and the apoptotic cell death was around 10% which suggests that both compounds induced growth arrest. In conclusion, this study demonstrated that both compounds were selective towards human colorectal cells by giving a strong cytotoxicity to cancer cells and low toxicity towards normal cells. Both compounds were suggested to induce growth arrest in HT-29 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.