Intervertebral disc (IVD) degeneration is a major contributing factor for discogenic low back pain (LBP), causing a significant global disability. The IVD consists of an inner core proteoglycan-rich nucleus pulposus (NP) and outer lamellae collagen-rich annulus fibrosus (AF) and is confined by a cartilage end plate (CEP), providing structural support and shock absorption against mechanical loads. Changes to degenerative cascades in the IVD cause dysfunction and instability in the lumbar spine. Various treatments include pharmacological, rehabilitation or surgical interventions that aim to relieve pain; however, these modalities do not halt the pathologic events of disc degeneration or promote tissue regeneration. Loss of stem and progenitor markers, imbalance of the extracellular matrix (ECM), increase of inflammation, sensory hyperinnervation and vascularization, and associated signaling pathways have been identified as the onset and progression of disc degeneration. To better understand the pain originating from IVD, our review focuses on the anatomy of IVD and the pathophysiology of disc degeneration that contribute to the development of discogenic pain. We highlight the key mechanisms and associated signaling pathways underlying disc degeneration causing discogenic back pain, current clinical treatments, clinical perspective and directions of future therapies. Our review comprehensively provides a better understanding of healthy IVD and degenerative events of the IVD associated with discogenic pain, which helps to model painful disc degeneration as a therapeutic platform and to identify signaling pathways as therapeutic targets for the future treatment of discogenic pain.
Coronary atherothrombotic diseases such as coronary artery disease, peripheral vascular disease, cerebrovascular disease, and heart failure are the serious concerns of the thrombus formed in blood vessels. Anticoagulant and antiplatelet drugs are the cornerstones of the management of these diseases. To prevent the recurrence of these diseases, double antiplatelet drugs such as aspirin and clopidogrel has been the standard management in most hospitals. However, aspirin resistance and clopidogrel inefficient effects due to noncompliance with double drugs regimen can cause a sinister effect on patients. Medicinal plants serve as a greater resource for new medication and their potential currently became a topic of interest to the researchers all over the world. Traditionally, certain herbs have been used as a treatment for heart diseases but have been investigated for their antiplatelet properties. This current review explained few traditional antithrombotic herbals and their antiplatelet properties in vitro and in vivo and this is to be deeply discussed in further research.
Alzheimer's disease (AD) is the most frequent and multifactorial form of dementia, characterised by multiple cognitive impairments and personality changes. Different methods including chemicals have been used to induce AD-like symptoms in rodent in order to screen many therapeutic drugs for a variety of cognitive dysfunctions. Articles from reliable databases such as Google Scholar, Science Direct, PubMed, Scopus, and Ovid were searched and retrieved with the following descriptors: 'Alzheimer's Disease' , Cognitive impairments' , Neurotoxins that induce AD' , Alzheimerogenic chemicals' , excitotoxins' , Amyloid beta' , neurofibrillary tangles. A number of chemicals have been studied to develop an animal model of AD on the basis of their mechanism of action for cognitive dysfunctions. Some of such chemicals are Heavy metals, Scopolamine, Ethanol, Colchicine, Streptozotocin, Lipopolysaccharide, and Okadaic acid among others, with a view to understanding the pathogenesis of this devastating disease. The purpose of this review is to put forward some AD pathophysiology including AD causative theories and also highlight some Alzheimerogenic chemicals for the purpose of enriching our existing knowledge. It is worth mentioning that not all the biochemical, histopathological, cognitive and behavioural abnormalities can be recapitulated. Nonetheless, experimental models of AD produced by chemicals offer insights to unravelling the pathogenesis of the disease.
Neurotransmission and cognitive dysfunctions have been linked to old age disorders including Alzheimer’s disease (AD). Aluminium is a known neurotoxic metal, whereas d-galactose (d-gal) has been established as a senescence agent. WIN55,212-2 (WIN), is a potent cannabinoid agonist which partially restores neurogenesis in aged rats. The current study aimed to explore the therapeutic potentials of WIN on Aluminium chloride (AlCl3) and d-gal-induced rat models with cognitive dysfunction. Healthy male albino Wistar rats weighing between 200–250 g were injected with d-gal 60 mg/kg intra peritoneally (i.p), while AlCl3 (200 mg/kg) was orally administered once daily for 10 consecutive weeks. Subsequently, from weeks 8–11 rats were co-administered with WIN (0.5, 1 and 2 mg/kg/day) and donepezil 1 mg/kg. The cognitive functions of the rats were assessed with a Morris water maze (MWM). Furthermore, oxidative stress biomarkers; malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) and neurogenesis markers: Nestin and glial fibrillary acidic protein (GFAP) were also evaluated, as well as the histology of the hippocampus. The results revealed that rats exposed to AlCl3 and d-gal alone showed cognitive impairments and marked neuronal loss (p < 0.05) in their hippocampal conus ammonis 1 (CA1). Additionally, a significant decrease in the expressions of GFAP and Nestin was also observed, including increased levels of MDA and decreased levels of SOD and GSH. However, administration of WIN irrespective of the doses given reversed the cognitive impairments and the associated biochemical derangements. As there were increases in the levels SOD, GSH, Nestin and GFAP (p < 0.05), while a significant decrease in the levels of MDA was observed, besides attenuation of the aberrant cytoarchitecture of the rat’s hippocampi. The biochemical profiles of the WIN-treated rats were normal. Thus, these findings offer possible scientific evidence of WIN being an effective candidate in the treatment of AD-related cognitive deficits.
Smoking and obesity are leading causes of morbidity and mortality worldwide. E-cigarette which was first introduced in 2000s is perceived as an effective alternative to conventional tobacco smoking. Limited knowledge is available regarding the risks and benefits of e-cigarettes. This study systematically reviews the current literature on the effects of e-cigarettes on body weight changes and adipocytes. The search was performed using OVID Medline and Scopus databases and studies meeting the inclusion criteria were independently assessed. This review included all English language, empirical quantitative and qualitative papers that investigated the effects of e-cigarettes on bodyweight or lipid accumulation or adipocytes. Literature searches identified 4965 references. After removing duplicates and screening for eligibility, thirteen references which involve human, in vivo and in vitro studies were reviewed and appraised. High prevalence of e-cigarette was reported in majority of the cross sectional studies conducted among respondent who are obese or overweight. More conclusive findings were identified in in vivo studies with e-cigarette causing weight decrease. However, these observations were not supported by in vitro data. Hence, the effect of e-cigarette on body weight changes warrants further investigations. Well-designed population and molecular studies are needed to further elucidate the role of e-cigarettes in obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.