The development of the teak wood processing industry is growing rapidly, especially in the Aceh area. Allows a lot of waste to be generated. This research was conducted by utilizing sawn wood waste into particle boards. To test the physical and mechanical properties of particleboard using a matrix of teak waste and SHCP 2668 WNC resin with a ratio of 60: 40, and variations in treatment (NaOH) 2,5, 5, and 7,5% in immersion for 2 hours. Then the particleboard is compressed using a hot press machine at a temperature of 150˚C for 20 minutes, and a pressure of 50 kg/cm2. Then tested according to SNI 03-2105-2006 standards, namely density, thickness expansion, moisture content, elasticity, and modulus of fracture. The results of the particle board test on the physical and mechanical properties test, namely the density yielded the best value for the 5% (NaOH) treatment with a value of 0.854 gr/cm3, the best water content test with 2.5% (NaOH) treatment with a value of 4.563 %, viscous development with treatment (NaOH) 5% with a value of 7.573%, the best elasticity test on treatment (NaOH) 2.5% with a value of 2.470 kgf/cm2, and the best fracture modulus test on treatment (NaOH) 7.5% with a value of 48.611 kgf/cm2 declared to meet the standard requirements of SNI 03-2105-2006. With alkaline treatment, particleboard gives a relatively good value compared to no treatment.
The aim of this paper is to investigate the effects of elastic stress for a C-ring specimen with an18.974-mm outer diameter and a 1.244-mm wall thickness. Tests are conducted on Type 304L SS material. Half-cell potential measurement specimens are used as methods of exposure and inspection The C-ring specimen for quantitatively determining the stress corrosion. Applying ASTM G38, which is a standard practice for making and using C-Ring Stress-Corrosion, was performed for elastic stress analysis. The results show that the effects of stress on the polarization curve are due to the magnitude of stress level in the specific corrosive environment.
Corrosion Under Insulation (CUI) can be described as localized corrosion that forms as a result of the penetration of water or moisture through an insulating material. The pipe material used is of the ASTM A53 standard and the fluid used in seawater because almost all industries are located on the coast. This type of coating is carried out on the test pipe using Meiji Epoxy Filler. The test method is carried out by flowing seawater fluid in pipes with water temperature variations of 30°C, 50°C, and 70°C. This pipe varies the type of insulation by using glasswool and Rockwool (ASTM G 189-07). This insulation is conditioned in a wet state by giving 2 ml of seawater drops with a pH value of 4 per 6 hours. The test equipment is divided into 3 series according to temperature variations with 4 test specimens and 2 coating variations respectively. The test time was carried out for 336 hours to obtain the corrosion rate results using the ASTM G31-72 weight loss method. The results showed that the type of Glasswool insulation with specimens coated had the lowest corrosion rate value of 0.00483 mmpy at a temperature of 30°C when compared to the same type of treatment on Rockwool insulation of 0.00724 mmpy or an increase of 2.41 times. This study shows that the type of insulation, temperature variation, and coating greatly affect the rate of corrosion and the type of corrosion that occurs is uniform corrosion.
Reinforced concrete (RC) corrosion is a leading of structural deterioration and premature degradation for the infrasturctures, with significant affected for safety, durability and reability. Therefore, early assessment of RC corrosion is important to prevent deterioration of the structure. The objective of this paper is to apply Boundary Element Method (BEM) for improving reinforced concrete (RC) corrosion assessment using field measurement data. In this study, the potential on whole domain of concrete structures was modeled by Laplace equation. The Laplace equation was solved by BEM, hence the potential on the concrete structure can be determined. The field data were measured by using half-cell potential technique and collected from an existing house in Aceh region that struck by the 2004 Sumatra tsunami. The simulation results show the use of BEM can improve the RC corrosion assessment. According to ASTM C876, the distribution of potential values on the concrete surface above the corroded area were in range -200 mV to -350 mV that indicated active corrosion was occurred. It can be inferred, the method can improve the field measurement data since it has capability to predict the corrosion profiles of reinforcing steel in more precise.
Heat exchanger expected to high effectiveness of heat transfer. Type of plate heat exchanger was more efficient compare to another heat exchangers in industrial applications with pressure less than 30 bar. The increased velocity of cold fluid flow has an impact to increase the performance of heat exchanger by heat transfer rate (Q), heat transfer coefficient (U), and the effectiveness of heat exchanger (ε). The increased velocity of cold fluid flow also incresing the heat transfer rate. The study carried out by variation of the cold fluid velocity at 0.03 m/s, 0.037 m/s, 0.045 m/s, 0.051 m/s and 0.059 m/s. Inlet hot fluid temperature (Th,i) at 45°C and cold fluid temperature (Tc,i) at 27°C constant. The results shows Q value from the original 1570.71 Watt to 1916.16 Watt on the hot side and 1751.89 Watt to 2187.01 Watt on the cold side. The U value from the original 1180.46 W/m2.°C becomes 1408,75 W/m2. °C. The ε value increased from 60.33% to 75.69%. The increasing of cold fluid velocity directly proportional to the the heat transfer rate (Q) and performance of the plate heat exchanger. This Phenomenon due to the faster circulation of the cold fluid, which causes the cold fluid to quickly return to its initial temperature (Th,i), an than increasing the plate heat exchanger's performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.