Correct object detection plays a key role in generating an accurate object tracking result. Feature-based methods have the capability of handling the critical process of extracting features of an object. This paper aims to investigate object tracking using feature-based methods in terms of (1) identifying and analyzing the existing methods; (2) reporting and scrutinizing the evaluation performance matrices and their implementation usage in measuring the effectiveness of object tracking and detection; (3) revealing and investigating the challenges that affect the accuracy performance of identified tracking methods; (4) measuring the effectiveness of identified methods in terms of revealing to what extent the challenges can impact the accuracy and precision performance based on the evaluation performance matrices reported; and (5) presenting the potential future directions for improvement. The review process of this research was conducted based on standard systematic literature review (SLR) guidelines by Kitchenam’s and Charters’. Initially, 157 prospective studies were identified. Through a rigorous study selection strategy, 32 relevant studies were selected to address the listed research questions. Thirty-two methods were identified and analyzed in terms of their aims, introduced improvements, and results achieved, along with presenting a new outlook on the classification of identified methods based on the feature-based method used in detection and tracking process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.