Maintenance and integrity management of hydrocarbons pipelines face the challenges from uncertainties in the data available. This paper demonstrates a way for pipeline remaining service life prediction that integrates structural reliability analysis, accumulated corrosion knowledge, and inspection data on a sound mathematical foundation. Pipeline defects depth grows with time according to an empirical corrosion power law, and this is checked for leakage and rupture probability. The pipeline operating pressure is checked with the degraded failure pressure given by ASME B31G code for rupture likelihood. As corrosion process evolves with time, Dynamic Bayesian Network (DBN) is employed to model the stochastic corrosion deterioration process. From the results obtained, the proposed DBN model for pipeline reliability is advanced compared with other traditional structural reliability method whereby the updating ability brings in more accurate prediction results of structural reliability. The comparisons show that the DBN model can achieve a realistic result similar to the conventional method, Monte Carlo Simulation with very minor discrepancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.