Though gains of chromosome 12p13.31 are highly recurrent in hPSC, their impact on differentiation is poorly understood. We identify a reduction in differentiation capacity towards all three germ layers and a subpopulation of residual pluripotent cells that appear during hepatic specification. These cells form as a result of the overexpression of NANOG and GDF3, whereby NANOG as the primary driver delays activation of WNT signaling, partly as a result of a direct physical interaction with TCF7. Entry into the residual state is determined by cell cycle position at the onset of differentiation and is maintained by a feedback loop between NANOG and GDF3. These findings highlight the ability of genetically abnormal hPSC to escape correct differentiation and to form residual pluripotent cells, an important risk in the safe clinical translation of hPSC. Our results further refine the molecular mechanisms that underpin the exit from pluripotency and onset of differentiation.
Human pluripotent stem cell (hPSC) cultures are prone to genetic drift, as cells that have acquired specific genetic abnormalities experience a selective advantage in vitro. These abnormalities are highly recurrent in hPSC lines worldwide, but currently their functional consequences in differentiating cells are scarcely described. An accurate assessment of the risk associated with these genetic variants in both research and clinical settings is therefore lacking. In this work, we established that one of these recurrent abnormalities, the loss of chromosome 18q, impairs neuroectoderm commitment and affects the cardiac progenitor differentiation of hESCs. We show that downregulation of SALL3, a gene located in the common 18q loss region, is responsible for failed neuroectodermal differentiation. Knockdown of SALL3 in control lines impaired differentiation in a manner similar to the loss of 18q, while transgenic overexpression of SALL3 in hESCs with 18q loss rescued the differentiation capacity of the cells. Finally, we show by gene expression analysis that loss of 18q and downregulation of SALL3 leads to changes in the expression of genes involved in pathways regulating pluripotency and differentiation, including the WNT, NOTCH, JAK-STAT, TGF-beta and NF-kB pathways, suggesting that these cells are in an altered state of pluripotency.
Human pluripotent stem cell (hPSC) cultures are prone to genetic drift, as cells that have acquired specific genetic abnormalities experience a selective advantage in vitro. These abnormalities are highly recurrent in hPSC lines worldwide, but currently their functional consequences in differentiating cells are scarcely described. An accurate assessment of the risk associated with these genetic variants in both research and clinical settings is therefore lacking. In this work, we established that one of these recurrent abnormalities, the loss of chromosome 18q, impairs neuroectoderm commitment and affects the cardiac progenitor differentiation of hESCs. We show that downregulation of SALL3, a gene located in the common 18q loss region, is responsible for failed neuroectodermal differentiation. Knockdown of SALL3in control lines impaired differentiation in a manner similar to the loss of 18q, while transgenic overexpression of SALL3 in hESCs with 18q loss rescued the differentiation capacity of the cells. Finally, we show by gene expression analysis that loss of 18q and downregulation of SALL3 leads to changes in the expression of genes involved in pathways regulating pluripotency and differentiation, including the WNT, NOTCH, JAK-STAT, TGF-beta and NF-kB pathways, suggesting that these cells are in an altered state of pluripotency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.