Aims:Polymyxins are an important last-line treatment for infections caused by multidrug-resistant Gram-negative bacteria. Nonetheless, the emergence of polymyxin-resistance and the limiting of polymyxin monotherapy urgently demands its optimisation. Aquilaria malaccensis (Agarwood) has been widely used as traditional medicine. Many parts of the plant including leaves exhibit a considerable in vitro antibacterial activity against microbial pathogens. Exploiting A. malaccensis in combination with polymyxins provides a novel strategy in fighting antimicrobial resistance. The objective of this study was to evaluate the combination effects of A. malaccensis extract with polymyxins against Acinetobacter baumannii and Klebsiella pneumoniae. Methodology and results: In vitro time-kill studies and GC-MS analysis were performed to evaluate the bacterial killing of polymyxin B and extract combination and analyse chemical compounds of the extract, respectively. The combination of polymyxin B (1 mg/L) and A. malaccensis extract (32 mg/mL and 64 mg/mL) treatments exhibited enhanced bacterial killing compared to polymyxin B alone at 4 h and 24 h. Combination treatments also inhibited the bacterial growth of both A. baumannii and K. pneumoniae observed throughout the 24 h. More than sixty compounds including phytol, 9,12octadecadienal, fatty acid, alkanes and terpenoids were putatively identified as the compounds that likely contributed to the antibacterial activity. Conclusion, significance and impact of study:This study was the first to report the potential application of A. malaccensis extract in combination with polymyxin B in treatment against A. baumannii and K. pneumoniae and can be further investigated and optimized for the treatment of bacterial infectious diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.