The reactive red 3 was degraded by catalytic wet oxidation process over Fe-RH-MCM-41 prepared by Direct Hydrothermal Technique (DHT) at Si/Fe molar ratio of 10 using silica from rice husk. The extended reaction conditions were studied as a function of reaction temperatures, initial H2O2 concentrations and initial pH of solutions designed by Box-Behnken design (BBD) based on Response Surface Methodology (RSM) to achieve the optimal condition and interaction of independent variables. The characterizations of catalyst were studied by XRD, BET surface area and TEM to explain the morphology of surface and to confirm the hexagonal structure. The results showed the 2theta peak can be indexed to hexagonal lattice that also confirmed by TEM result and surface area about 650 m2/g. All of independent variables showed significant on the degradation of reactive red 3 except for initial H2O2 concentration.
Adsorption of Zn(II) and Pb(II) from aqueous solution were studied by using modified coir pith as an adsorbent. The extended adsorption conditions were investigated as a function of calcination temperature, contact time, adsorbent size, initial pH of solution and initial Zn(II) and Pb(II) concentrations. The adsorption capacity increased rapidly in first 5 minute and reached equilibrium in 120 minutes for Zn(II) and 10 minutes for Pb(II). In case of Zn(II); the results showed that the calcination temperature of modified coir pith above 600oC gave the higher adsorption capacity. The sizes of modified coir pith have no effect on the adsorption capacity. The adsorption capacity increased with increasing initial solution pH value. In case of Pb(II); the calcination temperature of modified coir pith showed no effect on the adsorption capacity. The sizes of modified coir pith showed a little effect on the adsorption capacity. The adsorption capacity increased with increasing of initial solution pH value up to pH of 3 and then stable. The results also corresponded with the Langmuir and Freundlich isotherms and pseudo second order kinetic adsorption models. The modified coir pith gave a higher Zn(II) and Pb(II) adsorption capacity of 29.33 mg Zn(II)/g adsorbent and 36.50 mg Pb(II)/g adsorbent, respectively.
The adsorption efficiency of As (V) ions from an aqueous solution was investigated. The adsorption experiments were carried out in a batch reactor. The effects of operating parameters; i.e. the absorbent dose (g/L), the pH, the adsorption temperature (°C), the As (V) initial concentration (ppb), and type of adsorbents, on the adsorption efficiencies were studied. A PlackettBurman experimental design was used to screen for the important factors that influence As (V) adsorption. It has been found that the most important effect on the As (V) adsorption capacity was the type of adsorbent. The factor importance could be written in descending order as follows: the type of adsorbents, the adsorbent dose, the As (V) initial concentration, the adsorption temperature, and the pH.
Nanoscale zero-valent iron coated on diatomite (nZVI-D) was successfully synthesized as a composite material. It is the combination of nZVI and diatomite which has been proved to be a promising material in arsenite or As(III) removal. The result showed that 25.5% of As(III) was removed using diatomite only but more than 95% of As(III) was removed using nZVI-D, at the same contact time of 60 min and pH 6. The experimental isotherm data for As(III) adsorption at different initial concentrations were analyzed using the Langmuir, Freundlich, and Dubinin–Radushkevich equations. Among these three, the equilibrium data fitted well with the Langmuir isotherm. The kinetic adsorption was also studied using the pseudo-first, second-order, and intraparticle diffusion equations. The data were well explained by the pseudo-second-order kinetic model. From the results of kinetic adsorption and the adsorption isotherm, it can be concluded that arsenite adsorption was controlled by the mass transfer and adsorption process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.