In this contribution, we develop a novel global threshold-based active contour model. This model deploys a new edge-stopping function to control the direction of the evolution and to stop the evolving contour at weak or blurred edges. An implementation of the model requires the use of selective binary and Gaussian filtering regularized level set (SBGFRLS) method. The method uses either
Segmentation of organs from medical images is an active and interesting area of research. Liver segmentation incurs more challenges and difficulties compared with segmentation of other organs. In this paper we demonstrate a liver segmentation method for computer tomography images. We revisit the distance regularization level set (DRLS) model by deploying new balloon forces. These forces control the direction of the evolution and slow down the evolution process in regions that are associated with weak or without edges. The newly added balloon forces discourage the evolving contour from exceeding the liver boundary or leaking at a region that is associated with a weak edge, or does not have an edge. Our experimental results confirm that the method yields a satisfactory overall segmentation outcome.Comparing with the original DRLS model, our model is proven to be more effective in handling oversegmentation problems.
Organ segmentation from medical images is still an open problem and liver segmentation is a much more challenging task among other organ segmentations. This paper presents a liver segmentation method from a sequence of computer to mography images.We propose a novel balloon force that controls the direction of the evolution process and slows down the evolving contour in regions with weak or without edges and discourages the evolving contour from going far away from the liver boundary or from leaking at a region that has a weak edge, or does not have an edge. The model is implemented using a modified Distance Regularized Level Set (DRLS) model. The experimental results show that the method can achieve a satisfactory result. Comparing with the original DRLS model, our model is more effective in dealing with over segmentation problems.
In this paper, we propose a novel global threshold-based active contour model which employs a new edge-stopping function that controls the direction of the evolution and stops the evolving contour at weak or blurred edges. The model is implemented using selective binary and Gaussian filtering regularized level set (SBGFRLS) method. The method has a selective local or global segmentation property. It selectively penalizes the level set function to be a binary function. This is followed by using a Gaussian function to regularize it. The Gaussian filters smooth the level set function and afford the evolution more stability. The contour could be initialized anywhere inside the image to extract object boundaries. The proposed method performs well when the intensities inside and outside the object are homogenous. Our method is tested on synthetic, medical and Arabiccharacters images with satisfactory results
KEYWORDSImagesegmentation, Active contour,Geodesic active contour,C-V model,Level set method, ZAC model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.