Background Genetic testing is becoming an essential tool for breast cancer (BC) diagnosis and treatment pathway, and particularly important for early detection and cancer prevention. The purpose of this study was to explore the diagnostic yield of targeted sequencing of the high priority BC genes. Methods We have utilized a cost-effective targeted sequencing approach of high priority actionable BC genes ( BRCA1 , BRCA2 , ERBB2 and TP53) in a homogeneous patient cohort from Bangladesh ( n = 52) by using tumor and blood samples. Results Blood derived targeted sequencing revealed 25.58% (11/43) clinically relevant mutations (both pathogenic and variants of uncertain significance (VUS)), with 13.95% (6/43) of samples carrying a pathogenic mutations. We have identified and validated five novel pathogenic germline mutations in this cohort, comprising of two frameshift deletions in BRCA2, and missense mutations in BRCA1 , BRCA2 and ERBB2 gene respectively. Furthermore, we have identified three pathogenic mutations and a VUS within three tumor samples, including a sample carrying pathogenic mutations impacting both TP53 (c.322dupG; a novel frameshift insertion) and BRCA1 genes (c.116G > A). 22% of tissue samples had a clinically relevant TP53 mutation. Although the cohort is small, we have found pathogenic mutations to be enriched in BRCA2 (9.30%, 4/43) compare to BRCA1 (4.65%, 2/43). The frequency of germline VUS mutations found to be similar in both BRCA1 (4.65%; 2/43) and BRCA2 (4.65%; 2/43) compared to ERBB2 (2.32%; 1/43). Conclusions This is the first genetic study of BC predisposition genes in this population, implies that genetic screening through targeted sequencing can detect clinically significant and actionable BC-relevant mutations. Electronic supplementary material The online version of this article (10.1186/s12881-019-0881-0) contains supplementary material, which is available to authorized users.
Key Clinical MessageEpidermodysplasia verruciformis (EV) is an extremely rare hereditary skin disease characterized by an abnormal susceptibility to the human papilloma virus (HPV) with an increased risk of cutaneous malignancy. Here we report the first female severe EV case in Bangladesh, a 10‐year‐old girl with a nonsense somatic mutation impacting ANKRD26 gene.
Collectively, rare genetic diseases affect a significant number of individuals worldwide. In this study, we have conducted whole-exome sequencing (WES) and identified underlying pathogenic or likely pathogenic variants in five children with rare genetic diseases. We present evidence for disease-causing autosomal recessive variants in a range of disease-associated genes such as DHH-associated 46,XY gonadal dysgenesis (GD) or 46,XY sex reversal 7, GNPTAB-associated mucolipidosis II alpha/beta (ML II), BBS1-associated Bardet–Biedl Syndrome (BBS), SURF1-associated Leigh Syndrome (LS) and AP4B1-associated spastic paraplegia-47 (SPG47) in unrelated affected members from Bangladesh. Our analysis pipeline detected three homozygous mutations, including a novel c. 863 G > C (p.Pro288Arg) variant in DHH, and two compound heterozygous variants, including two novel variants: c.2972dupT (p.Met991Ilefs*) in GNPTAB and c.229 G > C (p.Gly77Arg) in SURF1. All mutations were validated by Sanger sequencing. Collectively, this study adds to the genetic heterogeneity of rare genetic diseases and is the first report elucidating the genetic profile of (consanguineous and nonconsanguineous) rare genetic diseases in the Bangladesh population.
BackgroundIntellectual disability (ID) is a complex condition that can impact multiple domains of development. The genetic contribution to ID’s etiology is significant, with more than 100 implicated genes and loci currently identified. The majority of such variants are rare and de novo genetic mutations.MethodsWe have applied whole‐genome microarray to identify large, rare, clinically relevant copy number variants (CNVs). We have applied well‐established algorithms for variants call. Quantitative polymerase chain reaction (qPCR) was applied to validate the variants using three technical replicates for each family member. To assess whether the copy number variation was due to balanced translocation or mosaicism, we further conducted droplet digital PCR (ddPCR) on the whole family. We have, as well, applied “critical‐exon” mapping, human developmental brain transcriptome, and a database of known associated neurodevelopmental disorder variants to identify candidate genes.ResultsHere we present two siblings who are both impacted by a large terminal duplication and a deletion. Whole‐genome microarray revealed an 18.82 megabase (MB) duplication at terminal locus (7q34‐q36.3) of chromosome 7 and a 3.90 MB deletion impacting the terminal locus (15q26.3) of chromosome 15. qPCR and ddPCR experiments confirmed the de novo origin of the variants and the co‐occurrence of these two de novo events among the siblings, but their absence in both parents, implicates an unbalanced translocation that could have mal‐segregated among the siblings or a possible germline mosaicism. These terminal events impact IGF1R, CNTNAP2, and DPP6, shown to be strongly associated with neurodevelopmental disorders. Detailed clinical examination of the siblings revealed the presence of both shared and distinct phenotypic features.ConclusionsThis study identified two large rare terminal de novo events impacting two siblings. Further phenotypic investigation highlights that even in the presence of identical large high penetrant variants, spectrum of clinical features can be different between the siblings.
Introduction: Copy number variations (CNVs) play a critical role in the pathogenesis of neurodevelopmental disorders (NDD) among children. In this study, we aim to identify clinically relevant CNVs, genes and their phenotypic characteristics in an ethnically underrepresented homogenous population of Bangladesh.Methods: We have conducted chromosomal microarray analysis (CMA) for 212 NDD patients with male to female ratio of 2.2:1.0 to identify rare CNVs. To identify candidate genes within the rare CNVs, gene constraint metrics [i.e., “Critical-Exon Genes (CEGs)”] were applied to the population data. Autism Diagnostic Observation Schedule-Second Edition (ADOS-2) was followed in a subset of 95 NDD patients to assess the severity of autism and all statistical tests were performed using the R package.Results: Of all the samples assayed, 12.26% (26/212) and 57.08% (121/212) patients carried pathogenic and variant of uncertain significance (VOUS) CNVs, respectively. While 2.83% (6/212) patients’ pathogenic CNVs were found to be located in the subtelomeric regions. Further burden test identified females are significant carriers of pathogenic CNVs compared to males (OR = 4.2; p = 0.0007). We have observed an increased number of Loss of heterozygosity (LOH) within cases with 23.85% (26/109) consanguineous parents. Our analyses on imprinting genes show, 36 LOH variants disrupting 69 unique imprinted genes and classified these variants as VOUS. ADOS-2 subset shows severe social communication deficit (p = 0.014) and overall ASD symptoms severity (p = 0.026) among the patients carrying duplication CNV compared to the CNV negative group. Candidate gene analysis identified 153 unique CEGs in pathogenic CNVs and 31 in VOUS. Of the unique genes, 18 genes were found to be in smaller (<1 MB) focal CNVs in our NDD cohort and we identified PSMC3 gene as a strong candidate gene for Autism Spectrum Disorder (ASD). Moreover, we hypothesized that KMT2B gene duplication might be associated with intellectual disability.Conclusion: Our results show the utility of CMA for precise genetic diagnosis and its integration into the diagnosis, therapy and management of NDD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.