Neuroimaging, in particular magnetic resonance imaging (MRI), has been playing an important role in understanding brain functionalities and its disorders during the last couple of decades. These cutting-edge MRI scans, supported by high-performance computational tools and novel ML techniques, have opened up possibilities to unprecedentedly identify neurological disorders. However, similarities in disease phenotypes make it very difficult to detect such disorders accurately from the acquired neuroimaging data. This article critically examines and compares performances of the existing deep learning (DL)-based methods to detect neurological disorders—focusing on Alzheimer’s disease, Parkinson’s disease and schizophrenia—from MRI data acquired using different modalities including functional and structural MRI. The comparative performance analysis of various DL architectures across different disorders and imaging modalities suggests that the Convolutional Neural Network outperforms other methods in detecting neurological disorders. Towards the end, a number of current research challenges are indicated and some possible future research directions are provided.
The recent outbreak of the novel Coronavirus Disease (COVID-19) has given rise to diverse health issues due to its high transmission rate and limited treatment options. Almost the whole world, at some point of time, was placed in lock-down in an attempt to stop the spread of the virus, with resulting psychological and economic sequela. As countries start to ease lock-down measures and reopen industries, ensuring a healthy workplace for employees has become imperative. Thus, this paper presents a mobile app-based intelligent portable healthcare (pHealth) tool, called iWorkSafe, to assist industries in detecting possible suspects for COVID-19 infection among their employees who may need primary care. Developed mainly for low-end Android devices, the iWorkSafe app hosts a fuzzy neural network model that integrates data of employees' health status from the industry's database, proximity and contact tracing data from the mobile devices, and user-reported COVID-19 self-test data. Using the built-in Bluetooth low energy sensing technology and K Nearest Neighbor and K-means techniques, the app is capable of tracking users' proximity and trace contact with other employees. Additionally, it uses a logistic regression model to calculate the COVID-19 self-test score and a Bayesian Decision Tree model for checking real-time health condition from intelligent e-health platform for further clinical attention of the employees. Rolled out in an apparel factory on 12 employees as a test case, the pHealth tool generates an alert to maintain social distancing among employees inside the industry. In addition, the app helps employees to estimate risk with possible COVID-19 infection based on the collected data and found that the score is effective in estimating personal health condition of the app user.INDEX TERMS Industry 4.0, artificial intelligence, machine learning, mobile app, digital health, safe workplace, worker safety, Coronavirus.
The Internet of Healthcare Things (IoHT) demands massive and smart connectivity, huge bandwidth, lower latency with ultra-high data rate and better quality of healthcare experience. Unlike the 5G wireless network, the upcoming 6G communication system is expected to provide Intelligent IoHT (IIoHT) services everywhere at any time to improve the quality of life of the human being. In this paper, we present the framework of 6G cellular networks, its aggregation with multidimensional communication techniques such as optical wireless communication network, cell-free communication system, backhaul network, and quantum communication, as well as distributed security paradigm in the context of IIoHT. Such low latency and ultra-high-speed communication network will provide a new paradigm for connecting homes to hospitals, healthcare people, medical devices, hospital infrastructure, etc. Also, the requirements of 6G wireless networking, other key techniques, challenges and research direction of deploying IIoHT are outlined in the article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.