Motivated by existing evidence of a preference among investors for assets with lottery-like payoffs and that many investors are poorly diversified, we investigate the significance of extreme positive returns in the cross-sectional pricing of stocks. Portfolio-level analyses and firm-level cross-sectional regressions indicate a negative and significant relation between the maximum daily return over the past one month (MAX) and expected stock returns. Average raw and risk-adjusted return differences between stocks in the lowest and highest MAX deciles exceed 1% per month. These results are robust to controls for size, book-to-market, momentum, short-term reversals, liquidity, and skewness. Of particular interest, including MAX generally subsumes or reverses the puzzling negative relation between returns and idiosyncratic volatility recently documented in
Goyal and Santa-Clara (2003) find a significantly positive relation between the equal-weighted average stock volatility and the value-weighted portfolio returns on the NYSE/AMEX/Nasdaq stocks for the period of 1963:08 to 1999:12. We show that this result is driven by small stocks traded on the Nasdaq, and is in part due to a liquidity premium. In addition, their result does not hold for the extended sample of 1963:08 to 2001:12 and for the NYSE/AMEX and NYSE stocks. More importantly, we find no evidence of a significant link between the value-weighted portfolio returns and the median and value-weighted average stock volatility. Copyright 2005 by The American Finance Association.
Motivated by existing evidence of a preference among investors for assets with lottery-like payoffs and that many investors are poorly diversified, we investigate the significance of extreme positive returns in the cross-sectional pricing of stocks. Portfolio-level analyses and firm-level cross-sectional regressions indicate a negative and significant relation between the maximum daily return over the past one month (MAX) and expected stock returns. Average raw and risk-adjusted return differences between stocks in the lowest and highest MAX deciles exceed 1% per month. These results are robust to controls for size, book-to-market, momentum, short-term reversals, liquidity, and skewness. Of particular interest, including MAX generally subsumes or reverses the puzzling negative relation between returns and idiosyncratic volatility recently documented in
This paper examines the cross-sectional relation between idiosyncratic volatility and expected stock returns. The results indicate that i) the data frequency used to estimate idiosyncratic volatility, ii) the weighting scheme used to compute average portfolio returns, iii) the breakpoints utilized to sort stocks into quintile portfolios, and iv) using a screen for size, price, and liquidity play critical roles in determining the existence and significance of a relation between idiosyncratic risk and the cross section of expected returns. Portfoliolevel analyses based on two different measures of idiosyncratic volatility (estimated using daily and monthly data), three weighting schemes (value-weighted, equal-weighted, inverse volatility-weighted), three breakpoints (CRSP, NYSE, equal market share), and two different samples (NYSE/AMEX/NASDAQ and NYSE) indicate that no robustly significant relation exists between idiosyncratic volatility and expected returns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.