In this article, we show that the recently introduced ordinal pattern dependence fits into the axiomatic framework of general multivariate dependence measures. Furthermore, we consider multivariate generalizations of established univariate dependence measures like Kendall's τ , Spearman's ρ and Pearson's correlation coefficient. Among these, only multivariate Kendall's τ proves to take the dynamical dependence of random vectors stemming from multidimensional time series into account. Consequently, the article focuses on a comparison of ordinal pattern dependence and multivariate Kendall's τ . To this end, limit theorems for multivariate Kendall's τ are established under the assumption of near epoch dependent, data-generating time series. We analyze how ordinal pattern dependence compares to multivariate Kendall's τ and Pearson's correlation coefficient on theoretical grounds. Additionally, a simulation study illustrates differences in the kind of dependencies that are revealed by multivariate Kendall's τ and ordinal pattern dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.