The aim of this study was to assess the effect of rubber seed kernel heat processing on in vitro rumen biohydrogenation of fatty acids and fermentation. The experiment was conducted with a completely randomized design (CRD). The inclusion of RSK at 0% (CON) and 20% with different processing methods as follows: Raw rubber seed kernel (RAWR), roasted rubber seed kernel (ROR), microwave irradiated rubber seed kernel (MIR), and rubber seed kernel were heated in a hot air oven (RHO) in total mixed ration (TMR) diets. The hydrogen cyanide (HCN) was reduced using RSK heat methods. The heat processing of RSK had no effect on cumulative gas production at 96 h, the gas production from the insoluble fraction (b), or degradability (p > 0.05), whereas it reduced the gas production from the immediately soluble fraction (a) and constant rate of gas production for the insoluble fraction (c) (p < 0.01). The RSK processing methods did not influence ruminal pH, total volatile fatty acid (VFA), or VFA proportions (p > 0.05). RSK heat processing reduced ammonia-nitrogen (NH3-N) (p < 0.04) while increasing the bacterial population (p < 0.02). Heat treatment had no effect on linoleic acid (C18:2 cis-9,12 + tran-9,12) (p > 0.05). The RHO increases oleic acid (C18:1 cis-9 + tran-9) and linolenic acid (C18:3 cis-9,12,15) concentrations (p < 0.01). In conclusion, RHO reduced rumen biohydrogenation of unsaturated fatty acids (UFA), especially C18:3 and C18:1.
The land-use patterns in watershed areas in the Chorakhe Hin Sub-district, Khon Buri District, Nakhon Ratchasima Province, Thailand, have been found to change from forest areas. Different agricultural areas cause variations in the amount of water that flows from the stream into the reservoir, potentially leading to future water shortages. This study was conducted to explore the effects of land-use change on the volume of water flow into the Mun Bon Reservoir, Chorakhe Hin Sub-district, Khon Buri District, Nakhon Ratchasima Province, Thailand. The model analysis techniques, namely Markov’s Chain CLUES and SWAT, were employed to predict the effects of land-use patterns in the area of the upper Mun River on the volume of water flow into the Mun Bon reservoir. According to the predictions obtained based on the land-use models, forest areas may be converted into cassava plantations by 2029. When the comparative effects were considered, the normal volume of water flowing into the Mun Bon reservoir was found to be equivalent to 96 million cubic meter per year. The predicted volume before Christ (A.D.) 2029 is 30 million cubic meter. Accordingly, the water volume in the Mun Bon reservoir would be lower than that derived from the usual land-use patterns.
This study was aimed to explore the synthesis of sol titanium dioxide and silver nanoparticles (TiO2-AgNPs) to develop rubber latex pillows according to ergonomics so that they possess self-cleaning properties and antibacterial activities to relieve acid reflux and enhance the ability to remove any dirt or bacteria. TiO2-AgNPs at AgNP concentration of 10 ppm coated on the surface of rubber latex ergonomic pillows were found the most suitable concentration that was effective for self-cleaning and MRSA inhibition. Self-cleaning properties were measured by the degradation of methylene blue for 90 minutes, TiO2-AgNP coated samples at AgNP concentration of 10 ppm degraded 44.2% of methylene blue under UV-A light, while samples not coated with TiO2-AgNP degraded 2% of methylene blue. Samples coated with TiO2-AgNP at AgNP concentration of 10 ppm were tested for inhibition of MRSA by the agar well diffusion method. Results showed the highest inhibition radii of 4.5 mm. Skin contact allergy patch tests in 20 volunteers showed no skin symptoms. According to the satisfaction analysis, the use of self-cleaning and antibacterial anti-reflux rubber pillows yielded a relatively high level of satisfaction ( = 4.19, S.D. = 0.46), compared with that of general rubber pillows.
Herein, we investigated nanocalcium silicate (nCa2SiO4) prepared from clam shells and rice husks for its utilisation as a chemical agent in a fire-extinguishing mixture comprising ABC dry powder. The fire-extinguishing performance was evaluated with Class A and B fires. The prepared mixture was compared with commercial mono-ammonium phosphate powder based on different parameters, namely extinguishing time, amount of extinguishing agent used, fire temperature reduction rate, powder coating on the fuel and a reburn incident. It was found that the mixture of nCa2SiO4 and ABC dry powder could extinguish Class A and B fires within 10.67 and 9 s, respectively, while commercial mono-ammonium phosphate powder required 11 and 11.33 s to extinguish Class A and B fires, respectively. Thus, the mixture of nCa2SiO4 and ABC dry powder was more effective and less consumed as compared to commercial mono-ammonium phosphate powder (Class B only). This study demonstrates the efficacy of nCa2SiO4 to improve the performance of dry chemical-based fire extinguishers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.