Okra pods, commonly eaten at an immature stage, undergo quick postharvest deterioration due to high respiration, water loss, wilting, toughening and decay. As okra is a tropical crop, its pods are susceptible to chilling injury (CI) at low storage temperatures. The effects of low temperature storage on the physiobiochemical properties of okra pods were determined. Chilling injury symptoms were found only in pods stored at 4°C and were more apparent after transfer to 25°C. In seeds, the CI index was positively correlated with seed browning, H 2 O 2 , malondialdehyde (MDA) content, and catalase (CAT) activity. Chilling-injured seeds had lower total phenolic content (TPC), antioxidant activity (DPPH scavenging activity and FRAP assay), peroxidase (POD), and superoxide dismutase (SOD) activities than non-injured seeds. Additionally, the seed browning index was related to high polyphenol oxidase (PPO) activity. In the pericarp, the CI index was also positively correlated with the H 2 O 2 and MDA contents. The POD and SOD activities in chilling-injured pericarp were significantly lower than in non-injured pericarp. Chilling injury resulted in an initial increase in DPPH scavenging and CAT activities which later decreased as CI became severe. These results indicate that CI in okra is due to accumulation of H 2 O 2 , and MDA, as well as its weak antioxidant defense mechanism. This resulted in development of CI symptoms, including seed browning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.