Intensely- and broadly-absorbing nanoparticles (IBANs)of silver protected by arylthiolates were recently synthesized and showed unique optical properties, yet question of their dispersity and their molecular formulas remained. Here IBANs are identified as a superatom complex with a molecular formula of Ag44(SR)304− and an electron count of 18.This molecular character is shared by IBANs protected by 4-fluorothiophenol or 2-naphthalenethiol. The molecular formula and purity is determined by mass spectrometry and confirmed by sedimentation velocity-analytical ultracentrifugation. The data also give preliminary indications of a unique structure and environment for Ag44(SR)304−.
Atomically precise thiolate-protected noble metal molecular nanoparticles are a promising class of model nanomaterials for catalysis, optoelectronics, and the bottom-up assembly of true molecular crystals. However, these applications have not fully materialized due to a lack of ligand exchange strategies that add functionality, but preserve the properties of these remarkable particles. Here we present a method for the rapid (<30 s) and complete thiolate-for-thiolate exchange of the highly sought after silver molecular nanoparticle [Ag44(SR)30](-4). Only by using this method were we able to preserve the precise nature of the particles and simultaneously replace the native ligands with ligands containing a variety of functional groups. Crucially, as a result of our method we were able to process the particles into smooth thin films, paving the way for their integration into solution-processed devices.
Sensing and characterization of water-soluble peptides is of critical importance in a wide variety of bioapplications. Single molecule nanopore spectrometry (SMNS) is based on the idea that one can use biological protein nanopores to resolve different sized molecules down to limits set by the blockade duration and noise. Previous work has shown that this enables discrimination between polyethylene glycol (PEG) molecules that differ by a single monomer unit. This paper describes efforts to extend SMNS to a variety of biologically relevant, water-soluble peptides. We describe the use of Au(SG) clusters, previously shown to improve PEG detection, to increase the on- and off-rate of peptides to the pore. In addition, we study the role that fluctuations play in the single molecule nanopore spectrometry (SMNS) methodology and show that modifying solution conditions to increase peptide flexibility (via pH or chaotropic salt) leads to a nearly 2-fold reduction in the current blockade fluctuations and a corresponding narrowing of the peaks in the blockade distributions. Finally, a model is presented that connects the current blockade depths to the mass of the peptides, which shows that our enhanced SMNS detection improves the mass resolution of the nanopore sensor more than 2-fold for the largest cationic peptides studied.
We report the synthesis of atomically monodisperse thiol-protected silver nanoclusters [Ag 44 (SR) 30 ] m , (SR ¼ 5mercapto-2-nitrobenzoic acid) in which the product nanocluster is highly stable in contrast to previous preparation methods. The method is one-pot, scalable, and produces nanoclusters that are stable in aqueous solution for at least 9 months at room temperature under ambient conditions, with very little degradation to their unique UV-Vis optical absorption spectrum. The composition, size, and monodispersity were determined by electrospray ionization mass spectrometry and analytical ultracentrifugation. The produced nanoclusters are likely to be in a superatom charge-state of m ¼ 4À, due to the fact that their optical absorption spectrum shares most of the unique features of the intense and broadly absorbing nanoparticles identified as [Ag 44 (SR) 30 ] 4À by Harkness et al. (Nanoscale, 2012, 4, 4269). A protocol to transfer the nanoclusters to organic solvents is also described. Using the disperse nanoclusters in organic media, we fabricated solid-state films of [Ag 44 (SR) 30 ] m that retained all the distinct features of the optical absorption spectrum of the nanoclusters in solution. The films were studied by X-ray diffraction and photoelectron spectroscopy in order to investigate their crystallinity, atomic composition and valence band structure. The stability, scalability, and the film fabrication method demonstrated in this work pave the way towards the crystallization of [Ag 44 (SR) 30 ] m and its full structural determination by single crystal X-ray diffraction. Moreover, due to their unique and attractive optical properties with multiple optical transitions, we anticipate these clusters to find practical applications in light-harvesting, such as photovoltaics and photocatalysis, which have been hindered so far by the instability of previous generations of the cluster.
Au137(SR)56, a nanomolecule with a precise number of metal atoms and ligands, was synthesized. The composition was confirmed by MALDI and ESI mass spectrometry using three unique ligands (-SCH2CH2Ph, -SC6H13, and -SC4H9) and nano-alloys with Ag and Pd. The electrocatalytic properties were tested for CO2 reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.