Thermal GeO2 oxides up to 136 nm thickness were produced by annealing Ge wafers in pure oxygen at 550 °C and 270 kPa pressure for up to 10 h. The oxidation kinetics followed the Deal–Grove law. Using multisample spectroscopic ellipsometry for a series of five thermal oxides with different thicknesses, the complex dielectric functions of Ge and GeO2 were determined from 0.5 to 6.6 eV, for thin-film metrology applications in Ge-based microelectronics and photonics. The dispersion of the GeO2 layer was modeled with a simple Tauc-Lorentz oscillator model, but a more complicated dispersion with eight parametric oscillators was required for Ge. A reasonable fit to the ellipsometric angles could be obtained by assuming that all thermal oxides can be described by the same dielectric function, regardless of thickness, but a slight improvement was achieved by allowing for a lower density oxide near the surface of the thickest films. The authors compare their results with literature data for Ge and bulk and thin-film GeO2.
The factorized plasmon-phonon polariton description of the infrared dielectric function is generalized to include an additional factor to account for the effects of interband electronic transitions. This new formalism is superior to the usual Drude–Lorentz summation of independent oscillators, especially in materials with large transverse-longitudinal optical phonon splittings, multiple infrared-active phonon modes, or high concentrations of free carriers, if a broadband description of the dielectric function from the far-infrared to the vacuum-ultraviolet spectral region is desired. After a careful comparison of both approaches, the factorized description is applied to the dielectric function of undoped and doped semiconductors (GaAs, GaSb, and InAs) and metal oxides from 0.03 to 9.0 eV. Specifically, the authors find that both descriptions of the far-infrared dielectric function yield the same carrier density and mobility, at least for a single species of carriers. To achieve valid results for moderately high doping concentrations, measurements to lower energies would be helpful.
The temperature dependence of the optical constants of materials (refractive index, absorption and extinction coefficients, and dielectric function) can be determined with spectroscopic ellipsometry over a broad range of temperatures and photon energies or wavelengths. Such results have practical value, for example for applications of optical materials at cryogenic or elevated temperatures. The temperature dependence of optical gaps and their broadenings also provides insight into the scattering of electrons and holes with other quasiparticles, such as phonons or magnons. This review presents a detailed discussion of the experimental considerations for temperature-dependent ellipsometry and selected results for insulators, semiconductors, and metals in the infrared to ultraviolet spectral regions.
Using spectroscopic ellipsometry from the midinfrared (0.03 eV) to the deep ultraviolet (6.5 eV), the authors determined the thickness dependence of the dielectric function for ZnO thin layers (5–50 nm) on Si and quartz in comparison to bulk ZnO. They observed a small blueshift of the band gap (∼80 meV) in thin ZnO layers due to quantum confinement, which is consistent with a simple effective mass theory in an infinite potential well. There is a drastic reduction in the excitonic effects near the bandgap, especially for thin ZnO on Si, which not only affects the excitonic absorption peak but also lowers the high-frequency dielectric constant by up to 40%. No significant change of the phonon parameters (except an increased broadening) in thin ZnO layers was found.
The dielectric function of bulk Ge is determined between 0.5 and 6.3 eV in a temperature range of 10–738 K using spectroscopic ellipsometry. The authors provide the data in a tabulated format that can be interpolated as a function of photon energy and temperature using commercial software. Another focus of this paper lies on the analysis of critical points, in particular, on the investigation of the temperature dependence of the direct bandgap E0 and the critical point E0+Δ0, where Δ0 is the spin–orbit splitting. To explore the temperature dependence of critical points, the parameters that characterize their line shapes are calculated using three different techniques. First, the common method of numerically calculating and analyzing the second derivatives of the dielectric function works well for critical points at higher energies. Second, an analysis in reciprocal space by performing a discrete Fourier transform and analyzing the resulting Fourier coefficients yields values for the energies of E0 and E0+Δ0. Third, the energy determined from a parametric semiconductor model is shown as a function of temperature. The authors observe a temperature dependent redshift of the E0 and E0+Δ0 critical point energies as well as an increase in the broadening of E0 with temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.