Bone marrow-derived mesenchymal stem cells (BMSCs) are able to differentiate into various types of skin cells and participate in skin regeneration and repair. Activin signaling can regulate wound healing and reepithelialization. The present study assessed the impact of activin B on BMSC-mediated cutaneous wound healing in rats and explored the possible mechanism involved. We found that CFSE-labeled BMSCs participated in wound healing in vivo, and compared to administration with PBS, activin B, or BMSCs, activin B plus BMSCs significantly promoted wound healing and hair follicle regeneration. Activin B induced actin stress fiber formation and cell migration in BMSCs in vitro. Activation of JNK and ERK, but not p38, was required for activin B-induced actin stress fiber formation and BMSC migration. These results show that activin B may promote BMSC-mediated wound healing by inducing actin stress fiber formation and BMSC migration via the ERK and JNK signal pathways. Combined administration of BMSCs and cytokines may be a promising therapeutic strategy for the management of skin wounds.
BackgroundActivin B has been reported to promote the proliferation and migration of keratinocytes in vitro via the RhoA-JNK signaling pathway, whereas its in vivo role and mechanism in wound healing process has not yet been elucidated.Principal FindingsIn this study, we explored the potential mechanism by which activin B induces epithelial wound healing in mice. Recombinant lentiviral plasmids, with RhoA (N19) and RhoA (L63) were used to infect wounded KM mice. The wound healing process was monitored after different treatments. Activin B-induced cell proliferation on the wounded skin was visualized by electron microscopy and analyzed by 5′-bromodeoxyuridine (BrdU) incorporation assay. Protein expression of p-JNK or p-cJun was determined by immunohistochemical staining and immunoblotting analysis. Activin B efficiently stimulated the proliferation of keratinocytes and hair follicle cells at the wound area and promoted wound closure. RhoA positively regulated activin B-induced wound healing by up-regulating the expression of p-JNK and p-cJun. Moreover, suppression of RhoA activation delayed activin B-induced wound healing, while JNK inhibition recapitulated phenotypes of RhoA inhibition on wound healing.ConclusionThese results demonstrate that activin B promotes epithelial wound closure in vivo through the RhoA-Rock-JNK-cJun signaling pathway, providing novel insight into the essential role of activin B in the therapy of wound repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.