SOCS proteins in regulation of receptor tyrosine kinase signaling.Uddin, Kazi; Kabir, Nuzhat N; Flores-Morales, Amilcar; Rönnstrand, Lars Link to publication Citation for published version (APA): Kazi, J. U., Kabir, N. N., Flores-Morales, A., & Rönnstrand, L. (2014). SOCS proteins in regulation of receptor tyrosine kinase signaling. Cellular and Molecular Life Sciences, 71(17), 3297-3310. DOI: 10.1007/s00018-014-1619-y General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. AbstractThe receptor tyrosine kinases (RTKs) are a family of cell surface receptors that play critical roles in signal transduction from extracellular stimuli. Many of this family of kinases are overexpressed or mutated in human malignancies and thus became attractive drug target for cancer treatment. The signaling mediated by RTKs must be tightly regulated by interacting proteins including protein-tyrosine phosphatases and ubiquitin ligases. The suppressor of cytokine signaling (SOCS) family proteins are well known negative regulators of cytokine receptors signaling consisting of eight structurally similar proteins, SOCS1-7 and CIS. A key feature of this family of proteins is the presence of an SH2 domain and a SOCS box. Recent studies suggest that SOCS proteins also play a role in RTK signaling. Activation of RTK results in transcriptional activation of SOCS encoding genes. These proteins associate with RTKs through their SH2 domains and subsequently recruit the E3 ubiquitin machinery through the SOCS box, and thereby limit receptor stability by inducing ubiquitination. In a similar fashion SOCS proteins negatively regulate mitogenic signaling by RTKs. It is also evident that RTKs sometimes can bypass SOCS regulation and SOCS proteins can even potentiate RTKs-mediated mitogenic signaling. Thus apart from negative regulation of receptor signaling, SOCS proteins may also influence signaling in other ways.
Therapy directed against oncogenic FLT3 has been shown to induce response in patients with acute myeloid leukemia (AML), but these responses are almost always transient. To address the mechanism of FLT3 inhibitor resistance, we generated two resistant AML cell lines by sustained treatment with the FLT3 inhibitor sorafenib. Parental cell lines carry the FLT3-ITD (tandem duplication) mutation and are highly responsive to FLT3 inhibitors, whereas resistant cell lines display resistance to multiple FLT3 inhibitors. Sanger sequencing and protein mass-spectrometry did not identify any acquired mutations in FLT3 in the resistant cells. Moreover, sorafenib treatment effectively blocked FLT3 activation in resistant cells, whereas it was unable to block colony formation or cell survival, suggesting that the resistant cells are no longer FLT3 dependent. Gene expression analysis of sensitive and resistant cell lines, as well as of blasts from patients with sorafenib-resistant AML, suggested an enrichment of the PI3K/mTOR pathway in the resistant phenotype, which was further supported by next-generation sequencing and phospho-specific-antibody array analysis. Furthermore, a selective PI3K/mTOR inhibitor, gedatolisib, efficiently blocked proliferation, colony and tumor formation, and induced apoptosis in resistant cell lines. Gedatolisib significantly extended survival of mice in a sorafenib-resistant AML patient-derived xenograft model. Taken together, our data suggest that aberrant activation of the PI3K/mTOR pathway in FLT3-ITD-dependent AML results in resistance to drugs targeting FLT3.
Protein kinase C (PKC) as a drug target in chronic lymphocytic leukemia.Uddin, Kazi; Kabir, Nuzhat N; Rönnstrand, Lars Link to publication Citation for published version (APA): Kazi, J. U., . Protein kinase C (PKC) as a drug target in chronic lymphocytic leukemia. Medical Oncology, 30(4), 757. DOI: 10.1007/s12032-013-0757-7General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The role of HOXB2 and HOXB3 in acute myeloid leukemia. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.